{"title":"Synthesis of hexagonal boron nitride: From bulk crystals to atomically thin films","authors":"J. Marcelo J. Lopes","doi":"10.1016/j.pcrysgrow.2021.100522","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Hexagonal boron nitride<span> (h-BN) is a wide band gap layered material that is promising for a plethora of applications ranging from neutron detection to quantum information processing. Moreover, it has become highly relevant in the field of two-dimensional crystals and their van der Waals </span></span>heterostructures<span> due to its multiple functionality as substrate, encapsulation layer, tunneling barrier, or dielectric<span> layer in various device schemes. Hence, controlled synthesis of h-BN has been intensively pursued aiming at its future implementation into different technologies. Herein, recent progress in growth of h-BN, either as bulk crystals or large-area thin films with thicknesses varying from tens of micrometers down to a single atomic layer, is reviewed. A general description of the main methods utilized including their technical aspects is presented in conjunction with the discussion of the </span></span></span>material properties determined using well-established characterization tools. Also the main challenges and application prospects of each growth approach are addressed.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 2","pages":"Article 100522"},"PeriodicalIF":4.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2021.100522","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960897421000012","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 21
Abstract
Hexagonal boron nitride (h-BN) is a wide band gap layered material that is promising for a plethora of applications ranging from neutron detection to quantum information processing. Moreover, it has become highly relevant in the field of two-dimensional crystals and their van der Waals heterostructures due to its multiple functionality as substrate, encapsulation layer, tunneling barrier, or dielectric layer in various device schemes. Hence, controlled synthesis of h-BN has been intensively pursued aiming at its future implementation into different technologies. Herein, recent progress in growth of h-BN, either as bulk crystals or large-area thin films with thicknesses varying from tens of micrometers down to a single atomic layer, is reviewed. A general description of the main methods utilized including their technical aspects is presented in conjunction with the discussion of the material properties determined using well-established characterization tools. Also the main challenges and application prospects of each growth approach are addressed.
期刊介绍:
Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research.
Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.