Progress in Crystal Growth and Characterization of Materials最新文献

筛选
英文 中文
The formation and stability of 3D and 2D materials 三维和二维材料的形成与稳定性
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2024-01-11 DOI: 10.1016/j.pcrysgrow.2023.100615
Mona Layegh, Peng Yan, Joseph W. Bennett
{"title":"The formation and stability of 3D and 2D materials","authors":"Mona Layegh,&nbsp;Peng Yan,&nbsp;Joseph W. Bennett","doi":"10.1016/j.pcrysgrow.2023.100615","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2023.100615","url":null,"abstract":"<div><p>With the emergence and popularity of high-performance computers, advances in materials informatics, and improvements in computing architectures and algorithms, the application of modeling in the field of materials science has become increasingly common and affordable. The ability to compute has benefited materials discovery in the last decade alone with many breakthroughs: improved photovoltaics, new functional nanomaterials, more efficient rechargeable batteries, and tailorable catalytic surfaces to name a few. Among various computing tools, first-principles calculations based on density functional theory (DFT) have been widely applied to high throughput computational analysis to better understand the formation, properties, and stability of new and existing materials. The advantages of DFT methods are that they are inexpensive, fast, and are capable of capturing nuances at the atomistic scale. Since DFT calculations are performed at 0 K and in vacuum, thermodynamic corrections need to be taken into account to match real world operating conditions in the laboratory and during use. These thermodynamic corrections have been applied for over twenty years and provided valuable guidance to the analysis of surface structure, vacancy formation, and stability across varying gaseous environments. The combination of DFT with experimental corrections significantly expands its flexibility as it can be used to generate stability conditions for specific elements and multi-component solids in water. This literature review will provide a thorough survey of first-principles DFT calculations combined with thermodynamics, as well as their application and research in the design, predicted stability, and characterization of 2D materials, their surfaces, and interfacial surface reactivity. A particular emphasis will be placed on the behavior of 2D materials in aqueous environments, comparing their surface transformation thermodynamics via processes such as ion release and adsorption using the newly created DFT + Solvent Ion Model (DSIM).</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"70 1","pages":"Article 100615"},"PeriodicalIF":5.1,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960897423000220/pdfft?md5=a2570dc205df4ac36d7b97d5b756a4b1&pid=1-s2.0-S0960897423000220-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139419322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural transformations and characterisation in nano-engineered alloys 纳米工程合金的结构转变和表征
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2023-11-26 DOI: 10.1016/j.pcrysgrow.2023.100606
Soham Mukherjee, Joysurya Basu, Rajiv Kumar Mandal
{"title":"Structural transformations and characterisation in nano-engineered alloys","authors":"Soham Mukherjee,&nbsp;Joysurya Basu,&nbsp;Rajiv Kumar Mandal","doi":"10.1016/j.pcrysgrow.2023.100606","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2023.100606","url":null,"abstract":"<div><p>Structural transformations in the solid state dictate operating regimes of materials for engineering applications. Advanced structural characterisation facilitated by electron microscopy has resulted in significant progress in our understanding of structural transformations across resolvable length scales. We shall confine this communication to one of the metallic systems. This refers to titanium (Ti) alloys. They exhibit formation of a variety of solid solution phases, intermetallic phases, quasicrystals, incommensurate structures, and metallic glasses under different processing conditions. Additionally, newer phase formation at nanometer length scales has also been observed in Ti alloys. The exploration of properties in presence of structures at nanoscale in these alloys have not been discussed in literature extensively. Such an approach will open an avenue for nano-engineered alloys. An attempt will be made to indicate the direction of investigation in this connection succinctly. Understanding the nature and pathways of solid state structural transformations in Ti alloys seem to be important in view of the wide variety of engineering applications. Nanostructured materials have shown formation of newer phases not included in equilibrium phase diagrams. This review shall dwell on this aspect by drawing parallelism from many other alloy systems at nanoscale. In particular, <span><math><mrow><mi>Au</mi><mo>−</mo><mtext>Cu</mtext></mrow></math></span> nanostructures will be discussed as an example. It will be argued that size of the system will have influence on the formation of structures that are normally not observed at microscopic length scales in Ti alloys. In view of the complexities involved in phase transformations in Ti alloys, it is important to evolve or look for a model that will help us understand structural transformations by minimum geometrical distortion from a parent phase. Such an approach will offer one of the ways of comprehending formation of phases at nanoscale. In addition to this, it will also help us to consider group-subgroup relationship. It will be shown that unified structural description towards this will be helpful. A brief summary of higher dimensional structural modelling will be presented here with particular reference to phases formed in Ti alloys.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"70 1","pages":"Article 100606"},"PeriodicalIF":5.1,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S096089742300013X/pdfft?md5=88a4d0a8779b400214c4edb3b4ca7ae6&pid=1-s2.0-S096089742300013X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138448306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances of interface, flow, and stress control for VB crystal growth: An overview VB晶体生长的界面、流动和应力控制研究进展综述
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2023-11-09 DOI: 10.1016/j.pcrysgrow.2023.100605
Yufeng Shi , Pengfei Wang , Honghe Mu , Huamin Kou , Anhua Wu , Liangbi Su
{"title":"Advances of interface, flow, and stress control for VB crystal growth: An overview","authors":"Yufeng Shi ,&nbsp;Pengfei Wang ,&nbsp;Honghe Mu ,&nbsp;Huamin Kou ,&nbsp;Anhua Wu ,&nbsp;Liangbi Su","doi":"10.1016/j.pcrysgrow.2023.100605","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2023.100605","url":null,"abstract":"<div><p>The Vertical Bridgman (VB) method plays a vital role in growing crystals of Group II-VI semiconductors, oxides, and fluorides. However, achieving large-scale crystals with high quality remains challenging due to the complexities of heat-mass transfer and phase change phenomena involved in the process. To enhance the understanding and control of the VB crystal growth, this paper reviews previous numerical simulation studies on optimizing and controlling the melt-crystal interface, flow, and stress during the growth process, as these factors strongly influence the generation and distribution of defects. The shape of the melt-crystal interface significantly impacts the propagation of grains and inclusions, and a desirable interface can be achieved by enhancing axial heat flux or suppressing radial heat dissipation at the interface. Effective control of melt flow ensures uniform solute distribution, and strategies like suppressing natural convection or introducing forced convection techniques are prove beneficial. Stress plays a pivotal role in dislocation movement and interaction, potentially leading to low angle grain boundaries and cracks. Stress control methods focus on minimizing deformation sources, including temperature, concentration, and mechanical contact. The paper provides detailed explanations of interface, flow, and stress control methods, offering valuable insights for researchers aiming to grow large-scale, high-quality crystals with enhanced efficiency. Furthermore, the control mechanisms and methods discussed in this review may also be applicable to other melt crystal growth techniques.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"69 2","pages":"Article 100605"},"PeriodicalIF":5.1,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92115322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic and molecular-kinetic considerations of the initial growth of newly born crystals; crystal size distribution; Dissolution of small crystals during Ostwald ripening due to temperature changes 新生晶体初始生长的热力学和分子动力学研究晶粒尺寸分布;奥斯特瓦尔德成熟过程中由于温度变化导致的小晶体溶解
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2023-10-30 DOI: 10.1016/j.pcrysgrow.2023.100604
Christo N. Nanev
{"title":"Thermodynamic and molecular-kinetic considerations of the initial growth of newly born crystals; crystal size distribution; Dissolution of small crystals during Ostwald ripening due to temperature changes","authors":"Christo N. Nanev","doi":"10.1016/j.pcrysgrow.2023.100604","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2023.100604","url":null,"abstract":"&lt;div&gt;&lt;p&gt;&lt;span&gt;This paper aims to present a comprehensive (rather than complete) review of recent studies and efforts to elucidate the initial growth of newly born crystals, their possible dissolution, and ripening due to temperature changes. It is argued that besides describing the birth of crystals, Gibbs’ thermodynamics also predetermines important features of the following crystal growth: the routes of initial crystal growth, dissolution, and ripening of nanocrystals are encoded in the negative branch of the dependence of the Gibbs’ free energy on crystal size. However, the growth and dissolution of crystals are inherently out of &lt;/span&gt;thermodynamic equilibria&lt;span&gt; processes and cannot be established thermodynamically; the mechanism and kinetics of the crystallization process are determined by kinetic factors. (But this does not mean that the thermodynamics and the kinetics are opposed concept; rather they supplement each other.)&lt;/span&gt;&lt;/p&gt;&lt;p&gt;In this paper, key points of the crystallization theory have been revisited and further elucidated. At first, the initial growth of the just-born crystals has been considered from a thermodynamic point of view; an equation has been derived that quantifies the variation of the Gibbs’ thermodynamic potential with the change in the size of continuously growing crystals. Then, using a molecular-scale kinetic approach, the probabilities for attachment and possible detachment of molecules to/from just-born crystals have been calculated. It is thus shown that the probability of decomposition of super-critically sized crystals down to subcritical dimension is negligibly small already for crystals larger than the critical size by three molecules only.&lt;/p&gt;&lt;p&gt;&lt;span&gt;This paper focuses on crystal ripening because, being the final crystallization stage, it determines the ultimate crystal size distribution - which is of significant interest. It is emphasized that, due to the relatively small driving energy and the diffusion-limited mass transfer, the isothermal Ostwald ripening is an extremely slow process - it proceeds for weeks or even months (therefore, the isothermal ripening does not find technological application). In contrast, with substances having temperature-dependent solubility ripening can be substantially accelerated under the impact of repeated changes in the temperature. The reason is that during the time of increased solubility, that is induced by the temperature change, the smallest crystals, which had been in equilibrium with the solution at the starting temperature, become under-critically sized and can dissolve faster than isothermally. So, to quantify the effect of the temperature changes on Ostwald ripening, the time needed for complete dissolution of small crystals (so small that they obey Gibbs–Thomson rule) is calculated; and since ripening takes place by &lt;/span&gt;diffusion of molecules, it has been assumed that the diffusion is the rate-determining step of the crystal dissolution (and growth) p","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"69 2","pages":"Article 100604"},"PeriodicalIF":5.1,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92043243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the multifaceted journey for the invention of epitaxial quantum dots 外延量子点的发明历程
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2023-10-19 DOI: 10.1016/j.pcrysgrow.2023.100603
Emanuele Pelucchi
{"title":"On the multifaceted journey for the invention of epitaxial quantum dots","authors":"Emanuele Pelucchi","doi":"10.1016/j.pcrysgrow.2023.100603","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2023.100603","url":null,"abstract":"<div><p><span><span>Epitaxial semiconductor quantum dots have been, in the last 40 years or so, at the center of the research effort of a large community. The focus being on “semiconductor </span>physics and devices”, in view of the broad applications and potential, e.g., for efficient temperature insensitive lasers at telecom wavelengths, or as “artificial atoms” for </span>quantum information processing. Our manuscript aims at addressing, with an historical perspective, the specifics of (III-V) epitaxial quantum dot early developments (largely for light emitting) and subsequent years. We will not only highlight the variety of epitaxial structures and methods, but also, intentionally glancing a didactic approach, discuss aspects that are, in general, little acknowledged or debated in the present literature. The analyses will also naturally bring us to examine some of current challenges, in a field which, despite sensational achievements, is, remarkably, still far from being mature in its developments and applications.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"69 2","pages":"Article 100603"},"PeriodicalIF":5.1,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92043242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation, growth mechanism, and application of Mg2B2O5 whiskers: A review Mg2B2O5晶须的制备、生长机理及应用综述
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2023-09-20 DOI: 10.1016/j.pcrysgrow.2023.100602
Zhaoyang Liu , Shuxing Wang , Songyang Pan , Kexin Cheng , Ruinan Zhang , Xiangnan Wang , Tianpeng Wen , Lei Yuan , Jingkun Yu
{"title":"Preparation, growth mechanism, and application of Mg2B2O5 whiskers: A review","authors":"Zhaoyang Liu ,&nbsp;Shuxing Wang ,&nbsp;Songyang Pan ,&nbsp;Kexin Cheng ,&nbsp;Ruinan Zhang ,&nbsp;Xiangnan Wang ,&nbsp;Tianpeng Wen ,&nbsp;Lei Yuan ,&nbsp;Jingkun Yu","doi":"10.1016/j.pcrysgrow.2023.100602","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2023.100602","url":null,"abstract":"<div><p>Magnesium borate (Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub>) whiskers are highly regarded as a promising inorganic reinforcing material due to their availability, ease of preparation, and remarkable reinforcing effect. The main objective of this article is to examine the properties of Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers and to encourage researchers to utilize them, thereby enhancing the characteristics of various composites in a cost–effective manner. Six production methods of Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers are addressed, and based on these methods, different growth mechanisms of Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers, including liquid–solid, solid–liquid–solid, vapor–solid, and vapor–liquid–solid mechanisms, are analyzed and summarized. As reinforcing materials, Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers are widely employed in alloys and polymers, effectively enhancing the physical and chemical properties of the resulting whisker–reinforced composites, including mechanical, friction and wear resistance, and flame retardancy properties. Furthermore, the impact of surface modification of Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers on the properties of composites was explored. The cost–effectiveness, favorable properties, and wide availability of Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers make them excellent potential materials for numerous applications, and the article provides an analysis and forecasts the future development direction and prospects of Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"69 2","pages":"Article 100602"},"PeriodicalIF":5.1,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960897423000098/pdfft?md5=107639af1a231d19e364f5a1162ffbfd&pid=1-s2.0-S0960897423000098-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91957800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronological evaluation of the synthesis techniques of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 soft magnetic alloy 纳米晶Fe73.5Cu1Nb3Si13.5B9软磁合金合成技术的时间顺序评价
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2023-09-20 DOI: 10.1016/j.pcrysgrow.2023.100601
Mohammad Nur-E-Alam , Arvil Bhattacharjee , Deba Prasad Paul , M.A. Hakim , Mohammad Aminul Islam , Tiong S. Kiong , Nowshad Amin , Mohammad Rashed Iqbal Faruque , Mayeen Uddin Khandaker
{"title":"Chronological evaluation of the synthesis techniques of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 soft magnetic alloy","authors":"Mohammad Nur-E-Alam ,&nbsp;Arvil Bhattacharjee ,&nbsp;Deba Prasad Paul ,&nbsp;M.A. Hakim ,&nbsp;Mohammad Aminul Islam ,&nbsp;Tiong S. Kiong ,&nbsp;Nowshad Amin ,&nbsp;Mohammad Rashed Iqbal Faruque ,&nbsp;Mayeen Uddin Khandaker","doi":"10.1016/j.pcrysgrow.2023.100601","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2023.100601","url":null,"abstract":"<div><p>In this review article, we focus on the synthesis process and properties of Fe-Si-B-based soft magnetic alloys<span><span><span> that exhibit superior magnetic properties. The process parameters related to the synthesis and characterization of these types of alloys are studied widely and investigated the properties observed in </span>nanocrystalline Cu and Nb-dopped Fe-Si-B-based magnetic alloys. The properties of these materials are an exceptional combination of high permeability, high </span>Curie temperature<span>, low core losses and anisotropy energy, and near zero effective magnetostriction suitable for various applications such as magnetic field sensors, sensors for non-destructive evaluation of materials, motors, transformer cores, electric vehicles, etc. A significant number of research works have been conducted so far and more research is continued to improve their properties in various ways including engineering of materials composition, optimization of synthesis processes, and parameters for easy integration into modern devices. This review article aims to demonstrate a comparison study of the properties of Fe-Si-B- based soft magnetic alloys and to provide the latest updates on their developments toward tailoring the extrinsic (coercivity, and permeability) and intrinsic (Curie temperature and saturation magnetization) properties for conquering the subsequent area of applications.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"69 2","pages":"Article 100601"},"PeriodicalIF":5.1,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24849393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silica-carbonate biomorphs of alkaline earth metals: Relationship with minerals since the Precambrian era 碱土金属的硅碳酸盐生物形态:与前寒武纪以来矿物的关系
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2023-02-01 DOI: 10.1016/j.pcrysgrow.2023.100594
Marcelino Antonio Zúñiga-Estrada, Erick Alfredo Zúñiga-Estrada, Mayra Cuéllar-Cruz
{"title":"Silica-carbonate biomorphs of alkaline earth metals: Relationship with minerals since the Precambrian era","authors":"Marcelino Antonio Zúñiga-Estrada,&nbsp;Erick Alfredo Zúñiga-Estrada,&nbsp;Mayra Cuéllar-Cruz","doi":"10.1016/j.pcrysgrow.2023.100594","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2023.100594","url":null,"abstract":"<div><p>Under alkaline conditions, silica forms self-assembled mineral compounds which are similar in morphology, nanostructure, and texture to the hybrid biomineral structures that, millions of years ago gave to life. In this review we propose that, during the earliest history of this planet, there was a geochemical scenario that led to large-scale production of both simple and complex organic compounds, many of which were important for prebiotic chemistry. The production was based on a high concentration of silica and high pH. Two main factors affected this process: a) a source of simple carbon molecules that were either synthesized abiotically from reactions associated with serpentinization, or carried by meteorites and produced by their impact on Earth, and b) the formation of self-organized silica-metal mineral compounds that catalyzed the condensation of single molecules in a reduced methane-rich atmosphere. We discuss the plausibility of this geochemical scenario and its catalytic properties and the transition towards a slightly alkaline to Neutral Ocean.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"69 1","pages":"Article 100594"},"PeriodicalIF":5.1,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1559677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrosteps dynamics and the growth of crystals and epitaxial layers 宏观台阶动力学与晶体和外延层的生长
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2022-11-01 DOI: 10.1016/j.pcrysgrow.2022.100581
Stanislaw Krukowski, Konrad Sakowski, Paweł Strak, Paweł Kempisty, Jacek Piechota, Izabella Grzegory
{"title":"Macrosteps dynamics and the growth of crystals and epitaxial layers","authors":"Stanislaw Krukowski,&nbsp;Konrad Sakowski,&nbsp;Paweł Strak,&nbsp;Paweł Kempisty,&nbsp;Jacek Piechota,&nbsp;Izabella Grzegory","doi":"10.1016/j.pcrysgrow.2022.100581","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2022.100581","url":null,"abstract":"<div><p>Step pattern stability of the vicinal surfaces during growth was analyzed using various surface kinetics models. It was shown that standard analysis of the vicinal surfaces provides no indication on the possible step coalescence and therefore could not be used to elucidate macrostep creation during growth. A scenario of the instability, leading go macrostep creation, was based on the dynamics of the step train, i.e. the step structure consisting of the high (train) and low (inter-train) density of the steps. The critical is step motion at the rear of the train which potentially leads to the step coalescence i.e. creation of the double and multiple step. The result of the analysis shows that the decisive factor for the step coalescence is the step density ratio in and out of the train. The ratio lower than 2 prevents double step formation irrespective of the kinetics. For higher ratio the coalesce depends on step kinetics: fast incorporation from lower terrace stabilizes the single steps, fast incorporation from upper leads to step coalescence. The double step is slower than the single steps, so the single steps behind catch up creating multistep and finally macrostep structure. The final surface structure consists of the macrosteps and superterraces, i.e. relatively flat vicinal segments. The macrostep alimentation from lower superterrace leads to emission of the single steps which move forward. Thus the single step motion is dominant crystal growth mode in the presence of the macrosteps. These steps finally are absorbed by the next macrostep. The absorption and emission of single steps sustain the macrostep existence, i.e. the macrostep fate is determined the single step dynamics. The condition for single step emission was derived. In addition, the macrosteps are prone to creation of the overhangs which results from surface dynamics coupling to impingement from the mother phase. The angular preferential access of the bulk material to the macrostep edge, leads to the overhang instability and creation of inclusions and dislocations.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"68 4","pages":"Article 100581"},"PeriodicalIF":5.1,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2578950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances on potential-driven growth of metal crystals from ionic liquids 离子液体中金属晶体电位驱动生长的研究进展
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2022-11-01 DOI: 10.1016/j.pcrysgrow.2022.100580
Md. Mominul Islam, Saika Ahmed, Muhammed Shah Miran, Md. Abu Bin Hasan Susan
{"title":"Advances on potential-driven growth of metal crystals from ionic liquids","authors":"Md. Mominul Islam,&nbsp;Saika Ahmed,&nbsp;Muhammed Shah Miran,&nbsp;Md. Abu Bin Hasan Susan","doi":"10.1016/j.pcrysgrow.2022.100580","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2022.100580","url":null,"abstract":"<div><p><span>This article highlights the electrodeposition of metals, in crystalline or </span>amorphous<span><span> form, that are monentous in the present era of science and technology. Available literature related to nucleation and growth of metal crystals has been reviewed to gain insight into the mechanism and kinetics. The progress made in the </span>electrodeposition<span><span> technique, using an ionic liquid (IL) medium, has been detailed for selected metals using different ILs for achieving the controlled growth mechanism driven by </span>electrochemical potential. Theoretical models for nucleation and growth of crystals by electrodeposition have been explained and the effect of crystallization overpotential on the growth of crystal growth has been discussed. Finally, the factors affecting the growth process and the mechanism have been identified and critically analyzed based on the available literature, fundamental knowledge-base, chemistry of ILs, and electrodeposition.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"68 4","pages":"Article 100580"},"PeriodicalIF":5.1,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3081422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信