The equation of the origin of life in the Universe (Part II): The combination of chemical elements does not determine the emergence of life on Earth

IF 4.5 2区 材料科学 Q1 CRYSTALLOGRAPHY
Mayra Cuéllar-Cruz
{"title":"The equation of the origin of life in the Universe (Part II): The combination of chemical elements does not determine the emergence of life on Earth","authors":"Mayra Cuéllar-Cruz","doi":"10.1016/j.pcrysgrow.2024.100625","DOIUrl":null,"url":null,"abstract":"<div><p>The origin of life has been marked by existing chemical, physical and atmospheric conditions in the primeval era of Earth. In this sense, experiments have been carried out that emulate the conditions of the Precambrian era, where organic blocks such as amino acids, sugars, organic compounds and O<sub>2</sub> have been synthesized from the elements of this condition. Nevertheless, even while these results have been disruptive, allowing a significant advance in the origin of life, no functional biomolecules have been synthesized. Considering the work done previously, as a starting point and the evidences of the synthesis of biomorphs in the presence of biomolecules, the objective of this study was the synthesis of barium silico-carbonate biomorphs, based on biomolecules in Precambrian conditions. The purpose of this is to identify if it is possible to obtain functional biomolecules. The results showed that the barium biomorphs synthesized in conditions that emulate the primitive era present spherical or circular morphology, with a chemical composition that corresponds to the polymorphs of witherite, goethite and carbonaceous material (CM) such as protein, carbohydrate and phosphate group bonds. However, the synthesis of an active or functional biomolecule was not possible. The results therefore show that to be able to obtain a functional biomolecule that could be considered a sign of life springing from organic and inorganic compounds, it is necessary to involve other factors heretofore not considered. This is due to the fact that chemical elements <em>per se</em>, together with some atmospheric factors that have been described which apparently permitted the formation of the protocell in the primitive era of Earth, are not sufficient to obtain functional biomolecules. In this way, the origin of life may be understood from the equation of life (<em>L</em> = amc<sup>2</sup>), considering all involved factors and not only the chemical composition of elements that make up various organisms in combination with only some atmospheric factors.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"70 2","pages":"Article 100625"},"PeriodicalIF":4.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096089742400010X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The origin of life has been marked by existing chemical, physical and atmospheric conditions in the primeval era of Earth. In this sense, experiments have been carried out that emulate the conditions of the Precambrian era, where organic blocks such as amino acids, sugars, organic compounds and O2 have been synthesized from the elements of this condition. Nevertheless, even while these results have been disruptive, allowing a significant advance in the origin of life, no functional biomolecules have been synthesized. Considering the work done previously, as a starting point and the evidences of the synthesis of biomorphs in the presence of biomolecules, the objective of this study was the synthesis of barium silico-carbonate biomorphs, based on biomolecules in Precambrian conditions. The purpose of this is to identify if it is possible to obtain functional biomolecules. The results showed that the barium biomorphs synthesized in conditions that emulate the primitive era present spherical or circular morphology, with a chemical composition that corresponds to the polymorphs of witherite, goethite and carbonaceous material (CM) such as protein, carbohydrate and phosphate group bonds. However, the synthesis of an active or functional biomolecule was not possible. The results therefore show that to be able to obtain a functional biomolecule that could be considered a sign of life springing from organic and inorganic compounds, it is necessary to involve other factors heretofore not considered. This is due to the fact that chemical elements per se, together with some atmospheric factors that have been described which apparently permitted the formation of the protocell in the primitive era of Earth, are not sufficient to obtain functional biomolecules. In this way, the origin of life may be understood from the equation of life (L = amc2), considering all involved factors and not only the chemical composition of elements that make up various organisms in combination with only some atmospheric factors.

宇宙中生命起源的方程式(第二部分):化学元素的组合并不决定地球生命的出现
生命起源的标志是地球原始时代现有的化学、物理和大气条件。从这个意义上说,已经开展了模拟前寒武纪条件的实验,利用这种条件下的元素合成了氨基酸、糖类、有机化合物和氧气等有机物块。然而,尽管这些成果具有颠覆性,在生命起源方面取得了重大进展,但还没有合成出具有功能的生物分子。考虑到以前所做的工作以及在生物大分子存在的情况下合成生物形态的证据,本研究的目标是在前寒武纪条件下根据生物大分子合成硅碳酸钡生物形态。其目的是确定是否有可能获得功能性生物分子。结果表明,在模拟原始时代的条件下合成的钡生物形态呈球形或圆形,其化学成分与枯草岩、鹅卵石和碳质材料(CM)的多晶体(如蛋白质、碳水化合物和磷酸基键)相一致。然而,活性或功能性生物分子却无法合成。因此,研究结果表明,要想从有机和无机化合物中获得可被视为生命迹象的功能性生物大分子,就必须考虑到迄今为止尚未考虑到的其他因素。这是因为,化学元素本身,再加上已经描述过的、显然允许在地球原始时代形成原生细胞的一些大气因素,并不足以获得功能性生物分子。因此,生命的起源可以从生命方程(L = amc2)来理解,要考虑到所有相关因素,而不仅仅是构成各种生物体的元素的化学成分与某些大气因素的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Crystal Growth and Characterization of Materials
Progress in Crystal Growth and Characterization of Materials 工程技术-材料科学:表征与测试
CiteScore
8.80
自引率
2.00%
发文量
10
审稿时长
1 day
期刊介绍: Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research. Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信