Jiaqi Tian , Xuejian Xie , Laibin Zhao , Xinglong Wang , Xiufang Chen , Xianglong Yang , Yan Peng , Xiaomeng Li , Xiaobo Hu , Xiangang Xu
{"title":"碳化硅晶体应力的起源和表征技术:综述","authors":"Jiaqi Tian , Xuejian Xie , Laibin Zhao , Xinglong Wang , Xiufang Chen , Xianglong Yang , Yan Peng , Xiaomeng Li , Xiaobo Hu , Xiangang Xu","doi":"10.1016/j.pcrysgrow.2024.100616","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon carbide (SiC) is a promising semiconductor material which attracts huge attention due to its wide bandgap, high thermal conductivity and great potential for electronic applications. Residual stress causes defects in crystals that can noticeably decrease the performance of SiC devices. This paper reviews the origins of residual stress and different methods for stress characterization. To begin with, the origins of residual stress during crystal growth and post-processing is introduced. Then, the development of wafer size and quality over the last decade is demonstrated. Identification and characterization of residual stress using different techniques are discussed in detail. Optimizing temperature distribution and post-processing parameters is critical for reducing stress in SiC crystals.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"70 1","pages":"Article 100616"},"PeriodicalIF":4.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960897424000019/pdfft?md5=505bb59d62ce69c0b8bc5b54429f70f8&pid=1-s2.0-S0960897424000019-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Origins and characterization techniques of stress in SiC crystals: A review\",\"authors\":\"Jiaqi Tian , Xuejian Xie , Laibin Zhao , Xinglong Wang , Xiufang Chen , Xianglong Yang , Yan Peng , Xiaomeng Li , Xiaobo Hu , Xiangang Xu\",\"doi\":\"10.1016/j.pcrysgrow.2024.100616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silicon carbide (SiC) is a promising semiconductor material which attracts huge attention due to its wide bandgap, high thermal conductivity and great potential for electronic applications. Residual stress causes defects in crystals that can noticeably decrease the performance of SiC devices. This paper reviews the origins of residual stress and different methods for stress characterization. To begin with, the origins of residual stress during crystal growth and post-processing is introduced. Then, the development of wafer size and quality over the last decade is demonstrated. Identification and characterization of residual stress using different techniques are discussed in detail. Optimizing temperature distribution and post-processing parameters is critical for reducing stress in SiC crystals.</p></div>\",\"PeriodicalId\":409,\"journal\":{\"name\":\"Progress in Crystal Growth and Characterization of Materials\",\"volume\":\"70 1\",\"pages\":\"Article 100616\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0960897424000019/pdfft?md5=505bb59d62ce69c0b8bc5b54429f70f8&pid=1-s2.0-S0960897424000019-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Crystal Growth and Characterization of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960897424000019\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960897424000019","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Origins and characterization techniques of stress in SiC crystals: A review
Silicon carbide (SiC) is a promising semiconductor material which attracts huge attention due to its wide bandgap, high thermal conductivity and great potential for electronic applications. Residual stress causes defects in crystals that can noticeably decrease the performance of SiC devices. This paper reviews the origins of residual stress and different methods for stress characterization. To begin with, the origins of residual stress during crystal growth and post-processing is introduced. Then, the development of wafer size and quality over the last decade is demonstrated. Identification and characterization of residual stress using different techniques are discussed in detail. Optimizing temperature distribution and post-processing parameters is critical for reducing stress in SiC crystals.
期刊介绍:
Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research.
Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.