{"title":"Molecular Basis of Cell Reprogramming into iPSCs with Exogenous Transcription Factors.","authors":"Hisato Kondoh","doi":"10.1007/978-3-031-39027-2_11","DOIUrl":"10.1007/978-3-031-39027-2_11","url":null,"abstract":"<p><p>A striking discovery in recent decades concerning the transcription factor (TF)-dependent process was the production of induced pluripotent stem cell (iPSCs) from fibroblasts by the exogenous expression of the TF cocktail containing Oct3/4 (Pou5f1), Sox2, Klf4, and Myc, collectively called OSKM. How fibroblast cells can be remodeled into embryonic stem cell (ESC)-like iPSCs despite high epigenetic barriers has opened a new essential avenue to understanding the action of TFs in developmental regulation. Two forerunning investigations preceded the iPSC phenomenon: exogenous TF-mediated cell remodeling driven by the action of MyoD, and the \"pioneer TF\" action to preopen chromatin, allowing multiple TFs to access enhancer sequences. The process of remodeling somatic cells into iPSCs has been broken down into multiple subprocesses: the initial attack of OSKM on closed chromatin, sequential changes in cytosine modification, enhancer usage, and gene silencing and activation. Notably, the OSKM TFs change their genomic binding sites extensively. The analyses are still at the descriptive stage, but currently available information is discussed in this chapter.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"72 ","pages":"193-218"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140176939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Epiblast and Pluripotent Stem Cell Lines.","authors":"Hisato Kondoh","doi":"10.1007/978-3-031-39027-2_1","DOIUrl":"10.1007/978-3-031-39027-2_1","url":null,"abstract":"<p><p>All somatic cells develop from the epiblast, which occupies the upper layer of two-layered embryos and in most mammals is formed after the implantation stage but before gastrulation initiates. Once the epiblast is established, the epiblast cells begin to develop into various somatic cells via large-scale cell reorganization, namely, gastrulation. Different pluripotent stem cell lines representing distinct stages of embryogenesis have been established: mouse embryonic stem cells (mESCs), human embryonic stem cells (hESCs), and mouse epiblast stem cells (EpiSCs), which represent the preimplantation stage inner cell mass, an early post-implantation stage epiblast, and a later-stage epiblast, respectively. Together, these cell lines provide excellent in vitro models of cell regulation before somatic cells develop. This chapter addresses these early developmental stages.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"72 ","pages":"3-9"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140176943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rafal P Piprek, Malgorzata Kloc, Klaudia Porebska, Paulina C Mizia, Izabela Rams-Pociecha, Jacek Z Kubiak
{"title":"Origin and Role of Testicular Macrophages in Testis Development, Steroidogenesis, and Spermatogenesis.","authors":"Rafal P Piprek, Malgorzata Kloc, Klaudia Porebska, Paulina C Mizia, Izabela Rams-Pociecha, Jacek Z Kubiak","doi":"10.1007/978-3-031-65944-7_5","DOIUrl":"10.1007/978-3-031-65944-7_5","url":null,"abstract":"<p><p>Testicular macrophages are the principal immune cells in the testis. In addition to their classical immune roles, they regulate male hormone synthesis by Leydig cells, regeneration of Leydig cells, spermatogonia proliferation and differentiation, maintenance of testis-specific environment for sperm formation, and testis development. The juvenile and adult testes contain two distinct macrophage populations with unique tissue localization, genetic markers, morphology, and function. The interstitial macrophages are physically and functionally connected to Leydig cells, while the peritubular macrophages localize around the seminiferous tubules and are crucial for spermatogonia differentiation. Macrophages in the fetal testes regulate testis vasculature formation and clearance of mislocated cells. The origin of testicular macrophages is unclear. Some studies suggest their origin from the yolk sac and others from the bone marrow-derived monocytes. We discuss this issue at the end of this review article.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"74 ","pages":"137-157"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monocytes/Macrophages in Helminth Infections: Key Players in Host Defence, Inflammation, and Tissue Repair.","authors":"Anuradha Rajamanickam, Subash Babu","doi":"10.1007/978-3-031-65944-7_13","DOIUrl":"10.1007/978-3-031-65944-7_13","url":null,"abstract":"<p><p>Monocytes/macrophages are pivotal in host defense, inflammation, and tissue repair. They are actively engaged during helminth infections, playing critical roles in trapping pathogens, eliminating them, repairing tissue damage, and mitigating type 2 inflammation. These cells are indispensable in preserving physiological equilibrium and overseeing pathogen resistance as well as metabolic processes. Furthermore, these immune cells are influenced by cellular metabolism, which adjusts in response to host-derived factors and environmental cues. They secrete effector molecules crucial for anti-helminthic immunity and healing tissues damaged by parasites. Helminth parasites manipulate the immune regulatory capabilities of monocytes/macrophages by secreting anti-inflammatory mediators to dodge host defenses. Infections, especially with helminths, induce metabolic adaptations involving monocytes/macrophages that can lead to enhanced insulin sensitivity. This review provides a synthesis of the activation and diversity of monocytes/macrophages, their involvement in inflammation, and the latest insights into the strategies of monocyte/macrophage-mediated host defense against helminth infections. It also sheds light on recent discoveries concerning the immune regulatory interactions between monocytes/macrophages and helminth parasites.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"74 ","pages":"315-340"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silvana Valdebenito, David Ajasin, Karl Valerdi, Yue Ran Liu, Samvrit Rao, Eliseo A Eugenin
{"title":"Mechanisms of Intracellular Communication in Cancer and Pathogen Spreading.","authors":"Silvana Valdebenito, David Ajasin, Karl Valerdi, Yue Ran Liu, Samvrit Rao, Eliseo A Eugenin","doi":"10.1007/978-3-031-62036-2_13","DOIUrl":"10.1007/978-3-031-62036-2_13","url":null,"abstract":"<p><p>Cell-to-cell interactions are essential for proper development, homeostasis, and complex syncytia/organ formation and function. Intercellular communication are mediated by multiple mechanisms including soluble mediators, adhesion molecules and specific mechanisms of cell to cell communication such as Gap junctions (GJ), tunneling nanotubes (TNT), and exosomes. Only recently, has been discovered that TNTs and exosomes enable the exchange of large signaling molecules, RNA, viral products, antigens, and organelles opening new avenues of research and therapeutic approaches. The focus of this review is to summarize these recent findings in physiologic and pathologic conditions.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"73 ","pages":"301-326"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oocyte Health and Quality: Implication of Mitochondria-related Organelle Interactions.","authors":"Osamu Udagawa","doi":"10.1007/978-3-031-62036-2_2","DOIUrl":"10.1007/978-3-031-62036-2_2","url":null,"abstract":"<p><p>Among factors like hormonal imbalance and uterine condition, oocyte quality is regarded as one of the key factors involved in age-related decline in the reproductive capacity. Here, are discussions about the functions played by organelles within the oocyte in forming the next generation that is more suitable for survival. Many insights on the adaptation to aging and maintenance of quality can be obtained from: interactions between mitochondria and other organelles that enable the long life of primordial oocytes; characteristics of organelle interactions after breaking dormancy from primary oocytes to mature oocytes; and characteristics of interactions between mitochondria and other organelles of aged oocytes collected during the ovulatory cycle from elderly individuals and animals. This information would potentially be beneficial to the development of future therapeutic methods or agents.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"73 ","pages":"25-42"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Divya Kapoor, Pankaj Sharma, Akash Saini, Eisa Azhar, James Elste, Ellen K Kohlmeir, Deepak Shukla, Vaibhav Tiwari
{"title":"Tunneling Nanotubes: The Cables for Viral Spread and Beyond.","authors":"Divya Kapoor, Pankaj Sharma, Akash Saini, Eisa Azhar, James Elste, Ellen K Kohlmeir, Deepak Shukla, Vaibhav Tiwari","doi":"10.1007/978-3-031-62036-2_16","DOIUrl":"10.1007/978-3-031-62036-2_16","url":null,"abstract":"<p><p>Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a \"surfing\" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"73 ","pages":"375-417"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Germline and Somatic Cell Syncytia in Insects.","authors":"Malgorzata Kloc, Wacław Tworzydło, Teresa Szklarzewicz","doi":"10.1007/978-3-031-37936-9_3","DOIUrl":"10.1007/978-3-031-37936-9_3","url":null,"abstract":"<p><p>Syncytia are common in the animal and plant kingdoms both under normal and pathological conditions. They form through cell fusion or division of a founder cell without cytokinesis. A particular type of syncytia occurs in invertebrate and vertebrate gametogenesis when the founder cell divides several times with partial cytokinesis producing a cyst (nest) of germ line cells connected by cytoplasmic bridges. The ultimate destiny of the cyst's cells differs between animal groups. Either all cells of the cyst become the gametes or some cells endoreplicate or polyploidize to become the nurse cells (trophocytes). Although many types of syncytia are permanent, the germ cell syncytium is temporary, and eventually, it separates into individual gametes. In this chapter, we give an overview of syncytium types and focus on the germline and somatic cell syncytia in various groups of insects. We also describe the multinuclear giant cells, which form through repetitive nuclear divisions and cytoplasm hypertrophy, but without cell fusion, and the accessory nuclei, which bud off the oocyte nucleus, migrate to its cortex and become included in the early embryonic syncytium.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"71 ","pages":"47-63"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138300240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gerasimos Anagnostopoulos, Camille Blériot, Nicolas Venteclef, Florent Ginhoux
{"title":"Immunometabolic Rewiring: A Tale of Macronutrients and Macrophages.","authors":"Gerasimos Anagnostopoulos, Camille Blériot, Nicolas Venteclef, Florent Ginhoux","doi":"10.1007/978-3-031-65944-7_3","DOIUrl":"10.1007/978-3-031-65944-7_3","url":null,"abstract":"<p><p>Myeloid cells, including monocytes, macrophages, dendritic cells, and polymorphonuclear cells are key components of homeostasis maintenance and immune response. Among the myeloid lineage, macrophages stand out as highly versatile cells that safeguard tissue functions but also sense and respond to potentially harmful microenvironmental cues. Numerous studies have demonstrated that the nutritional status and macronutrient availability affect macrophage identity and function. However, the exact mechanistic links between macronutrient intake and cellular metabolic shifts are only beginning to be understood. In this chapter, we explore how dietary \"macros\"-carbohydrates, fats, and amino acids-impact the immunomodulatory activity of macrophages in healthy and inflamed tissues.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"74 ","pages":"89-118"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crosstalk Between Macrophages and Breast Cancer Cells: Networking Within Tumors.","authors":"Pooja Kamal Melwani, Rahul Checker, Murali Mohan Sagar Balla, Badri Narain Pandey","doi":"10.1007/978-3-031-65944-7_8","DOIUrl":"10.1007/978-3-031-65944-7_8","url":null,"abstract":"<p><p>Tumor associated macrophages (TAMs) are one of the most prominent immune cells in the breast tumor microenvironment (TME). TAMs are categorised into classically activated anti-tumorigenic M1 and alternatively activated pro-tumorigenic M2 macrophages. TAMs are known to promote cancer pathogenesis by facilitating cancer cell and cancer stem cell growth, angiogenesis, immune evasion, invasion, and migration. Consequently, TAMs drive cancer progression towards metastasis. This chapter describes the role of TME in driving monocyte recruitment and polarization toward the M2 phenotype. We also illustrate the modalities of intercellular networking such as paracrine signaling, exosomes, and tunneling nanotubes (TNTs) that TAMs and cancer cells employ within TME to communicate with each other and with other cells of TME to facilitate the dynamic process of cancer progression. Finally, we discuss the clinical implications of TAMs in breast cancer and potential therapeutic strategies targeting TAM recruitment, polarization, and TAM-mediated immune evasion for effective cancer therapy.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"74 ","pages":"213-238"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}