{"title":"Monocytes/Macrophages in Helminth Infections: Key Players in Host Defence, Inflammation, and Tissue Repair.","authors":"Anuradha Rajamanickam, Subash Babu","doi":"10.1007/978-3-031-65944-7_13","DOIUrl":null,"url":null,"abstract":"<p><p>Monocytes/macrophages are pivotal in host defense, inflammation, and tissue repair. They are actively engaged during helminth infections, playing critical roles in trapping pathogens, eliminating them, repairing tissue damage, and mitigating type 2 inflammation. These cells are indispensable in preserving physiological equilibrium and overseeing pathogen resistance as well as metabolic processes. Furthermore, these immune cells are influenced by cellular metabolism, which adjusts in response to host-derived factors and environmental cues. They secrete effector molecules crucial for anti-helminthic immunity and healing tissues damaged by parasites. Helminth parasites manipulate the immune regulatory capabilities of monocytes/macrophages by secreting anti-inflammatory mediators to dodge host defenses. Infections, especially with helminths, induce metabolic adaptations involving monocytes/macrophages that can lead to enhanced insulin sensitivity. This review provides a synthesis of the activation and diversity of monocytes/macrophages, their involvement in inflammation, and the latest insights into the strategies of monocyte/macrophage-mediated host defense against helminth infections. It also sheds light on recent discoveries concerning the immune regulatory interactions between monocytes/macrophages and helminth parasites.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-65944-7_13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Monocytes/macrophages are pivotal in host defense, inflammation, and tissue repair. They are actively engaged during helminth infections, playing critical roles in trapping pathogens, eliminating them, repairing tissue damage, and mitigating type 2 inflammation. These cells are indispensable in preserving physiological equilibrium and overseeing pathogen resistance as well as metabolic processes. Furthermore, these immune cells are influenced by cellular metabolism, which adjusts in response to host-derived factors and environmental cues. They secrete effector molecules crucial for anti-helminthic immunity and healing tissues damaged by parasites. Helminth parasites manipulate the immune regulatory capabilities of monocytes/macrophages by secreting anti-inflammatory mediators to dodge host defenses. Infections, especially with helminths, induce metabolic adaptations involving monocytes/macrophages that can lead to enhanced insulin sensitivity. This review provides a synthesis of the activation and diversity of monocytes/macrophages, their involvement in inflammation, and the latest insights into the strategies of monocyte/macrophage-mediated host defense against helminth infections. It also sheds light on recent discoveries concerning the immune regulatory interactions between monocytes/macrophages and helminth parasites.
期刊介绍:
Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.