Results and Problems in Cell Differentiation最新文献

筛选
英文 中文
Correction to: Tunneling Nanotubes: The Cables for Viral Spread and Beyond. 更正:隧道纳米管:病毒传播的电缆及其他。
Results and Problems in Cell Differentiation Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-62036-2_23
Divya Kapoor, Pankaj Sharma, Akash Saini, Eisa Azhar, James Elste, Ellen K Kohlmeir, Deepak Shukla, Vaibhav Tiwari
{"title":"Correction to: Tunneling Nanotubes: The Cables for Viral Spread and Beyond.","authors":"Divya Kapoor, Pankaj Sharma, Akash Saini, Eisa Azhar, James Elste, Ellen K Kohlmeir, Deepak Shukla, Vaibhav Tiwari","doi":"10.1007/978-3-031-62036-2_23","DOIUrl":"https://doi.org/10.1007/978-3-031-62036-2_23","url":null,"abstract":"","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"73 ","pages":"C1"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theranostic Diagnostics. Theranostic Diagnostics.
Results and Problems in Cell Differentiation Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-62036-2_22
Mohammad Uzair Ali, Bharat N Chaudhary, Sudipta Panja, Howard E Gendelman
{"title":"Theranostic Diagnostics.","authors":"Mohammad Uzair Ali, Bharat N Chaudhary, Sudipta Panja, Howard E Gendelman","doi":"10.1007/978-3-031-62036-2_22","DOIUrl":"10.1007/978-3-031-62036-2_22","url":null,"abstract":"<p><p>Diagnosing and then treating disease defines theranostics. The approach holds promise by facilitating targeted disease outcomes. The simultaneous analysis of finding the presence of disease pathophysiology while providing a parallel in treatment is a novel and effective strategy for seeking improved medical care. We discuss how theranostics improves disease outcomes is discussed. The chapter reviews the delivery of targeted therapies. Bioimaging techniques are highlighted as early detection and tracking systems for microbial infections, degenerative diseases, and cancers.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"73 ","pages":"551-578"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organelle Communication with the Nucleus. 细胞器与细胞核的交流
Results and Problems in Cell Differentiation Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-62036-2_1
Sourabh Sengupta, Daniel L Levy
{"title":"Organelle Communication with the Nucleus.","authors":"Sourabh Sengupta, Daniel L Levy","doi":"10.1007/978-3-031-62036-2_1","DOIUrl":"10.1007/978-3-031-62036-2_1","url":null,"abstract":"<p><p>Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"73 ","pages":"3-23"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Biological Significance of Trogocytosis. 逆行吞噬的生物学意义。
Results and Problems in Cell Differentiation Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-62036-2_5
Deborah Agbakwuru, Scott A Wetzel
{"title":"The Biological Significance of Trogocytosis.","authors":"Deborah Agbakwuru, Scott A Wetzel","doi":"10.1007/978-3-031-62036-2_5","DOIUrl":"10.1007/978-3-031-62036-2_5","url":null,"abstract":"<p><p>Trogocytosis is the intercellular transfer of membrane and membrane-associated proteins between cells. Trogocytosis is an underappreciated phenomenon that has historically routinely been dismissed as an artefact. With a greater understanding of the process and the implications it has on biological systems, trogocytosis has the potential to become a paradigm changer. The presence on a cell of molecules they don't endogenously express can alter the biological activity of the cell and could also lead to the acquisition of new functions. To better appreciate this phenomenon, it is important to understand how these intercellular membrane exchanges influence the function and activity of the donor and the recipient cells. In this chapter, we will examine how the molecules acquired by trogocytosis influence the biology of a variety of systems including mammalian fertilization, treatment of hemolytic disease of the newborn, viral and parasitic infections, cancer immunotherapy, and immune modulation.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"73 ","pages":"87-129"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784324/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liver Macrophage Diversity in Health and Disease. 健康与疾病中的肝脏巨噬细胞多样性
Results and Problems in Cell Differentiation Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-65944-7_7
Paul Horn, Frank Tacke
{"title":"Liver Macrophage Diversity in Health and Disease.","authors":"Paul Horn, Frank Tacke","doi":"10.1007/978-3-031-65944-7_7","DOIUrl":"https://doi.org/10.1007/978-3-031-65944-7_7","url":null,"abstract":"<p><p>The liver fulfils a plethora of metabolic and immunological functions. Liver macrophages are a heterogeneous immune cell population with high plasticity and are important for maintaining normal liver function but are also critically involved in disease processes. In this chapter, we review the heterogeneity and multifaceted functions of hepatic macrophages in liver health and in disease conditions, including acute liver injury, chronic liver diseases, and hepatocellular carcinoma. Under homeostatic conditions, the tissue resident Kupffer cells are phagocytic cells that have important functions in immune surveillance, antigen presentation, and metabolic regulation while the roles of other populations such as capsular, peritoneal, or monocyte-derived macrophages in liver health are less clearly defined. Upon liver injury, Kupffer cell numbers are markedly reduced while monocyte-derived macrophages significantly expand and take critical roles in driving and resolving liver injury, including important pathogenic involvements in inflammation, fibrosis, and regeneration. They also create and maintain an immunosuppressive and immune-excluded microenvironment in hepatocellular carcinoma. Single-cell and spatial omics technologies are significantly expanding our understanding of the diversity and plasticity of macrophage populations under different conditions and enable the reliable identification of specific hepatic macrophage subsets. This knowledge can now be applied to dissect the exact contributions of distinct macrophage populations to disease processes and hopefully will pave the way for new therapeutic interventions.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"74 ","pages":"175-209"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intercellular Communication Through Microtubular Highways. 通过微管高速公路进行细胞间通信
Results and Problems in Cell Differentiation Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-62036-2_8
Lorél Y Medina, Rita E Serda
{"title":"Intercellular Communication Through Microtubular Highways.","authors":"Lorél Y Medina, Rita E Serda","doi":"10.1007/978-3-031-62036-2_8","DOIUrl":"10.1007/978-3-031-62036-2_8","url":null,"abstract":"<p><p>Tunneling nanotubes (TNTs) are open-ended, membrane-encased extensions that connect neighboring cells. They have diameters up to 1 μm but are able to expand to convey large cargos. Lengths vary depending on the distance of the cells but have been reported to be capable of extending beyond 300 μm. They have actin cytoskeletons that are essential for their formation, and may or may not have microtubule networks. It is thought that thin TNTs lack microtubules, while thicker TNTs have microtubular highways that use motor proteins to convey materials, including proteins, mitochondria, and nanoparticles between cells. Specifically, the presence of dynein and myosin support trafficking of cargo in both directions. The purpose of these connections is to enable cells to work as a unit or to extend cell life by diluting cytotoxic agents or acquiring biological material needed to survive.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"73 ","pages":"155-171"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reciprocal Interactions Between the Epithelium and Mesenchyme in Organogenesis. 器官形成过程中上皮细胞和间充质之间的相互影响
Results and Problems in Cell Differentiation Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-39027-2_7
Hisato Kondoh
{"title":"Reciprocal Interactions Between the Epithelium and Mesenchyme in Organogenesis.","authors":"Hisato Kondoh","doi":"10.1007/978-3-031-39027-2_7","DOIUrl":"10.1007/978-3-031-39027-2_7","url":null,"abstract":"<p><p>Many organs are composed of epithelial and mesenchymal tissue components. These two tissue component types develop via reciprocal interactions. However, for historical and technical reasons, the effects of the mesenchymal components on the epithelium have been emphasized. Well-documented examples are the regionally specific differentiation of the endoderm-derived primitive gut tube under the influence of surrounding mesenchyme. In contrast to a pile of reports on mesenchyme-derived signaling mechanisms, few studies have depicted the epithelial action in depth. This chapter highlights an example of an opposite action from the epithelial side, which was found in esophagus development.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"72 ","pages":"119-126"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140176942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intercellular Highways in Transport Processes. 运输过程中的细胞间通道。
Results and Problems in Cell Differentiation Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-62036-2_9
Edina Szabó-Meleg
{"title":"Intercellular Highways in Transport Processes.","authors":"Edina Szabó-Meleg","doi":"10.1007/978-3-031-62036-2_9","DOIUrl":"10.1007/978-3-031-62036-2_9","url":null,"abstract":"<p><p>Communication among cells is vital in multicellular organisms. Various structures and mechanisms have evolved over time to achieve the intricate flow of material and information during this process. One such way of communication is through tunnelling membrane nanotubes (TNTs), which were initially described in 2004. These TNTs are membrane-bounded actin-rich cellular extensions, facilitating direct communication between distant cells. They exhibit remarkable diversity in terms of structure, morphology, and function, in which cytoskeletal proteins play an essential role. Biologically, TNTs play a crucial role in transporting membrane components, cell organelles, and nucleic acids, and they also present opportunities for the efficient transmission of bacteria and viruses, furthermore, may contribute to the dissemination of misfolded proteins in certain neurodegenerative diseases. Convincing results of studies conducted both in vitro and in vivo indicate that TNTs play roles in various biomedical processes, including cell differentiation, tissue regeneration, neurodegenerative diseases, immune response and function, as well as tumorigenesis.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"73 ","pages":"173-201"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophage Cell Cycle. 巨噬细胞的细胞周期
Results and Problems in Cell Differentiation Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-65944-7_4
Louis Dillac, Leon El Dika, Rahim Ullah, Jacek Z Kubiak, Malgorzata Kloc
{"title":"Macrophage Cell Cycle.","authors":"Louis Dillac, Leon El Dika, Rahim Ullah, Jacek Z Kubiak, Malgorzata Kloc","doi":"10.1007/978-3-031-65944-7_4","DOIUrl":"https://doi.org/10.1007/978-3-031-65944-7_4","url":null,"abstract":"<p><p>Macrophages are dynamic and plastic immune cells essential for tissue homeostasis and pathogen defense. Their cell cycle regulation is highly influenced by intrinsic and extrinsic signals facilitating rapid responses to infections and tissue damage. Dysregulation of their cell cycle leads to diseases like cancer and HIV. This chapter highlights aspects of the macrophage cell cycle crucial for the development of targeted therapies.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"74 ","pages":"119-134"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancer Arrays Regulating Developmental Genes: Sox2 Enhancers as a Paradigm. 调控发育基因的增强子阵列:以 Sox2 增强子为范例
Results and Problems in Cell Differentiation Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-39027-2_9
Hisato Kondoh
{"title":"Enhancer Arrays Regulating Developmental Genes: Sox2 Enhancers as a Paradigm.","authors":"Hisato Kondoh","doi":"10.1007/978-3-031-39027-2_9","DOIUrl":"10.1007/978-3-031-39027-2_9","url":null,"abstract":"<p><p>Enhancers are the primary regulatory DNA sequences in eukaryotes and are mostly located in the non-coding sequences of genes, namely, intergenic regions and introns. The essential characteristic of an enhancer is the ability to activate proximal genes, e.g., a reporter gene in a reporter assay, regardless of orientation, relative position, and distance from the gene. These characteristics are ascribed to the interaction (spatial proximity) of the enhancer sequence and the gene promoter via DNA looping, discussed in the latter part of this chapter.Developmentally regulated genes are associated with multiple enhancers carrying distinct cell and developmental stage specificities, which form arrays on the genome. We discuss the array of enhancers regulating the Sox2 gene as a paradigm. Sox2 enhancers are the best studied enhancers of a single gene in developmental regulation. In addition, the Sox2 gene is located in a genomic region with a very sparse gene distribution (no other protein-coding genes in ~1.6 Mb in the mouse genome), termed a \"gene desert,\" which means that most identified enhancers in the region are associated with Sox2 regulation. Furthermore, the importance of the Sox2 gene in stem cell regulation and neural development justifies focusing on Sox2-associated enhancers.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"72 ","pages":"145-166"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140176936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信