Materials Science and Engineering: R: Reports最新文献

筛选
英文 中文
Exploring the potential of hydroxyapatite-based materials in biomedicine: A comprehensive review 探索羟基磷灰石基材料在生物医学中的潜力:全面综述
IF 31.6 1区 材料科学
Materials Science and Engineering: R: Reports Pub Date : 2024-11-02 DOI: 10.1016/j.mser.2024.100870
Congrui Liu , Mengchen Xu , Yinchuan Wang , Qiuyue Yin , Jing Hu , Hao Chen , Zhiwei Sun , Chao Liu , Xiaoyan Li , Weijia Zhou , Hong Liu
{"title":"Exploring the potential of hydroxyapatite-based materials in biomedicine: A comprehensive review","authors":"Congrui Liu ,&nbsp;Mengchen Xu ,&nbsp;Yinchuan Wang ,&nbsp;Qiuyue Yin ,&nbsp;Jing Hu ,&nbsp;Hao Chen ,&nbsp;Zhiwei Sun ,&nbsp;Chao Liu ,&nbsp;Xiaoyan Li ,&nbsp;Weijia Zhou ,&nbsp;Hong Liu","doi":"10.1016/j.mser.2024.100870","DOIUrl":"10.1016/j.mser.2024.100870","url":null,"abstract":"<div><div>Hydroxyapatite (HA), which shares similarities in both chemical composition and structure with bone phosphate systems, and has garnered significant attention in biomedicine due to its outstanding biocompatibility, bioactivity, osteoconduction, and osteoinductivity. Its resemblance to the mineral phase found in bone tissue has led to its extensive utilization in bone grafting and implantation, dental materials, and drug delivery systems. Furthermore, HA’s characteristics can be tailored on various synthetic methods, including precipitation, sol-gel, and biomimetic approaches allowing for the production of customized materials with precisely controlled properties. Recent research has focused on enhancing the HA’s mechanical strength, biodegradability, and bioactivity through composite formulations with polymers, ceramics, and other components, aiming to develop advanced biomaterials with improved properties for myriad biomedical applications. This comprehensive review outlines the diverse fabrication methods for HA and its derivatives, highlighting their biomedical applications and recent advancements. As for the synthesis and functionalization of HA, attentions have been paid to the innovative and efficient methods, precise control of crystal structure and morphology, surface and doping modification, and bionics. Special focus is placed on combining HA with other biomaterials for tissue regeneration, implants, cancer therapy and diagnostics. Optimization of mechanical properties and biocompatibility of HA, personalized customization according to individual differences, and enhancement of antibacterial properties are essential for tissue regeneration and implants. For anti-tumor, precise and combination therapies, as well as the molecular mechanism of the interaction between HA and tumor cells, need to be further explored. Emerging uses in endodontics and anti-inflammatory treatments are also discussed. The review concludes by proposing future research directions to address a wider range of medical challenges effectively.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100870"},"PeriodicalIF":31.6,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The correlation between molecular structure and superlubricity in homojunctions of 2D materials 二维材料同质结中分子结构与超润滑性之间的相关性
IF 31.6 1区 材料科学
Materials Science and Engineering: R: Reports Pub Date : 2024-10-30 DOI: 10.1016/j.mser.2024.100868
Lei Liu , Yuxin Li , Haoyu Wang , Zhanglin Yang , Kunpeng Wang , Jianbin Luo , Yuhong Liu
{"title":"The correlation between molecular structure and superlubricity in homojunctions of 2D materials","authors":"Lei Liu ,&nbsp;Yuxin Li ,&nbsp;Haoyu Wang ,&nbsp;Zhanglin Yang ,&nbsp;Kunpeng Wang ,&nbsp;Jianbin Luo ,&nbsp;Yuhong Liu","doi":"10.1016/j.mser.2024.100868","DOIUrl":"10.1016/j.mser.2024.100868","url":null,"abstract":"<div><div>Despite the abundant structure of two-dimensional (2D) materials in superlubricity research, a comprehension of the underlying structure principles governing their performance remains elusive. This paper comprehensively investigated the interlayer sliding behavior of several representative 2D material homojunctions, and elucidated the influence mechanism of molecular structure on their superlubricating properties. The interlayer friction of 2D material homojunctions were experimentally investigated using an innovative technique based on the orientation and transfer of nanosheets. The simulated results not only validate the widely recognized mechanisms of maximum energy corrugation (E<sub>c</sub>) for interlayer friction and maximum binding energy (Γ<sub>b</sub>) for interlayer adhesion, but also propose an energy-based index, E<sub>c</sub>/│Γ<sub>b</sub>│, to track the experimental trend of friction coefficient (μ) in accordance with molecular friction theory. Furthermore, two interlayer friction mechanisms, potential barrier and potential well, are resolved and the intrinsic relationship between the structural form and mechanism manifestation is elucidated. The efficacy of hybridization in the structural design of superlubricating materials has been theoretically demonstrated, as experimentally evidenced by the exceptional performance exhibited by metal-organic frameworks (MOFs) (μ: 5.5*10<sup>−4</sup>).</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100868"},"PeriodicalIF":31.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diamond under extremes 极端条件下的钻石
IF 31.6 1区 材料科学
Materials Science and Engineering: R: Reports Pub Date : 2024-10-22 DOI: 10.1016/j.mser.2024.100857
Alex C. Li , Boya Li , Felipe González-Cataldo , Robert E. Rudd , Burkhard Militzer , Eduardo M. Bringa , Marc A. Meyers
{"title":"Diamond under extremes","authors":"Alex C. Li ,&nbsp;Boya Li ,&nbsp;Felipe González-Cataldo ,&nbsp;Robert E. Rudd ,&nbsp;Burkhard Militzer ,&nbsp;Eduardo M. Bringa ,&nbsp;Marc A. Meyers","doi":"10.1016/j.mser.2024.100857","DOIUrl":"10.1016/j.mser.2024.100857","url":null,"abstract":"<div><div>Diamond is, by virtue of the covalent bonding between atoms and the very strong carbon to carbon bonds, the hardest natural material. It has been a fascinating material since its discovery, first as a decorative gem and more recently, for its numerous industrial uses because of its extreme hardness, elastic modulus, and optical transparency. In recent years, it has become a preferred ablator for laser shock experiments, and this has led to its choice as the capsule material for fusion experiments at the National Ignition Facility. This review covers both experimental and computational (including machine learning) advancements in research on diamond subjected extreme conditions of temperature and pressure. The synergy between shock and ramp loading experiments and atomic level simulations is proving to be powerful in advancing our understanding of diamond under extremes.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100857"},"PeriodicalIF":31.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxide based triboelectric nanogenerators: Recent advances and future prospects in energy harvesting 基于氧化物的三电纳米发电机:能量收集领域的最新进展和未来前景
IF 31.6 1区 材料科学
Materials Science and Engineering: R: Reports Pub Date : 2024-10-22 DOI: 10.1016/j.mser.2024.100866
Supraja Potu, Anu Kulandaivel, Buchaiah Gollapelli, Uday Kumar Khanapuram, Rakesh Kumar Rajaboina
{"title":"Oxide based triboelectric nanogenerators: Recent advances and future prospects in energy harvesting","authors":"Supraja Potu,&nbsp;Anu Kulandaivel,&nbsp;Buchaiah Gollapelli,&nbsp;Uday Kumar Khanapuram,&nbsp;Rakesh Kumar Rajaboina","doi":"10.1016/j.mser.2024.100866","DOIUrl":"10.1016/j.mser.2024.100866","url":null,"abstract":"<div><div>Triboelectric nanogenerators (TENGs) have gained significant attention as a viable solution for energy harvesting, sensing, and self-powered systems. However, their effectiveness heavily relies on the materials employed. Although dielectric polymers, metals, 2D materials, organic and inorganic materials are frequently utilized in TENG design, a critical demand exists for additional materials to enhance TENG performance and expand its utility across a diverse range of applications. Oxide materials (OM) have emerged as promising candidates due to their remarkable attributes, such as biocompatibility, high sensitivity, non-toxicity, and high electron mobility, demonstrating significant promise for many energy harvesting applications. While previous reviews are based on polymers, metal-organic frameworks, 2D materials, and waste materials, the present report marks the first comprehensive review highlighting the significance of oxide materials-based TENGs (OM-TENGs) and their potential applications. This review thoroughly explores the growing interest in OM as triboelectric materials, meticulously examining various types of OM-TENGs and their output performances. Additionally, the study examines the performance of OM-TENGs in energy harvesting, self-powered sensing, human-machine interaction, and their integration into wearable systems. The final part of the review highlights the necessity for further research on OM-TENGs and offers recommendations for future studies to propel this field forward.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100866"},"PeriodicalIF":31.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative advances and challenges in solid oxide electrolysis cells: Exploring surface segregation dynamics in perovskite electrodes 固体氧化物电解槽的创新进展与挑战:探索过氧化物电极的表面偏析动力学
IF 31.6 1区 材料科学
Materials Science and Engineering: R: Reports Pub Date : 2024-10-16 DOI: 10.1016/j.mser.2024.100864
Muhammad Bilal Hanif , Sajid Rauf , Muhammad Zubair Khan , Zaheer Ud Din Babar , Osama Gohar , Mohsin Saleem , Kun Zheng , Iftikhar Hussain , Bin Lin , Dmitry Medvedev , Cheng-Xin Li , Martin Motola
{"title":"Innovative advances and challenges in solid oxide electrolysis cells: Exploring surface segregation dynamics in perovskite electrodes","authors":"Muhammad Bilal Hanif ,&nbsp;Sajid Rauf ,&nbsp;Muhammad Zubair Khan ,&nbsp;Zaheer Ud Din Babar ,&nbsp;Osama Gohar ,&nbsp;Mohsin Saleem ,&nbsp;Kun Zheng ,&nbsp;Iftikhar Hussain ,&nbsp;Bin Lin ,&nbsp;Dmitry Medvedev ,&nbsp;Cheng-Xin Li ,&nbsp;Martin Motola","doi":"10.1016/j.mser.2024.100864","DOIUrl":"10.1016/j.mser.2024.100864","url":null,"abstract":"<div><div>Hydrogen generation by means of environmentally friendly approaches is of paramount importance in the field of contemporary science and technology. Solid oxide electrolysis cells (SOECs) represent a high-temperature trajectory of H<sub>2</sub> production, offering highly efficient electrical-to-chemical energy conversion at 400–800 °C. SOECs exhibit numerous advantages over low-temperature electrolysis technologies, including a wide potential performance range, high conversion efficiency, excellent selectivity, and the ability to provide co-electrolysis of H<sub>2</sub>O and CO<sub>2</sub>, supporting hydrogen energy strategies and carbon emission reduction programs. However, SOECs suffer from unsatisfactory long-term stability, which is caused by a number of microstructurally, chemically, and electrically related factors. In order to address these issues, we present the current review article, which provides a detailed description of the chemical and electrochemical phenomena that occur in SOECs during their real operation, in relation to both internal factors (the composition of functional materials) and external aspects (gas compositions, temperature, and applied potential). An in-depth analysis of these interrelationships enables the rational selection of materials and optimization of SOEC operating conditions. Various strategies for the optimal functioning of fuel electrodes, such as doping, in-situ exsolution, and catalytic advancements, are explored. For oxygen electrodes, performance optimization strategies including the development of novel perovskite materials with tailored surface properties and the incorporation of mixed ionic-electronic conductors to facilitate enhanced oxygen ion transport and electrochemical activity, are comprehensively summarized. Moreover, a particular focus of this review is on the surface segregation behavior of perovskite electrodes, a critical aspect influencing SOEC performance and stability. Recent innovations in SOECs development aimed at mitigating surface segregation, such as doping strategies, surface treatments, and the development of novel perovskite compositions with enhanced stability, are discussed in detail for the first time. Consequently, this work is regarded as a valuable reference in the field of SOECs, particularly in relation to energy materials, degradation processes, solid state ionics, and electrochemistry. By employing these innovative strategies, the long-term stability and efficiency of SOECs can be significantly enhanced, making them more viable for large-scale hydrogen production and carbon reduction initiatives.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100864"},"PeriodicalIF":31.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural, light emitting, and photoelectrical properties of multilayered 2D mixed alloys of gallium monochalcogenides 多层二维单质镓混合合金的结构、发光和光电特性
IF 31.6 1区 材料科学
Materials Science and Engineering: R: Reports Pub Date : 2024-10-15 DOI: 10.1016/j.mser.2024.100867
Ching-Hwa Ho , Luthviyah Choirotul Muhimmah
{"title":"Structural, light emitting, and photoelectrical properties of multilayered 2D mixed alloys of gallium monochalcogenides","authors":"Ching-Hwa Ho ,&nbsp;Luthviyah Choirotul Muhimmah","doi":"10.1016/j.mser.2024.100867","DOIUrl":"10.1016/j.mser.2024.100867","url":null,"abstract":"<div><div>Gallium monochalcogenides (GaX, where X represents Te, Se, or S) have attracted significant attention in the development of 2D semiconductor materials owing to their specific optical and electrical characteristics. Multilayered mixed GaX compounds, ternary alloys of gallium chalcogenides, are mostly direct semiconductors and are considered excellent candidates for wide energy-range light-emitting materials for application in future optoelectronic devices. This review provides a thorough investigation into ternary alloys of gallium monochalcogenides, focusing on the GaTe<sub>1−x</sub>Se<sub>x</sub>, GaSe<sub>1−x</sub>S<sub>x</sub>, and GaTe<sub>1−x</sub>S<sub>x</sub> series of layered semiconductor compounds. We provide a comprehensive overview of the methods used to grow these materials, analyze their crystal structures, and characterize their properties. Various growth methods and conditions and their material yields are described. Structural characterization methods reveal detailed information on the composition-driven variations in crystal structure and phase. An optical property analysis reveals the remarkable tunability of their bandgaps and emission spectra, establishing their potential for optoelectronics applications. The light emission range of the GaTe<sub>1−x</sub>Se<sub>x</sub> series is from near-infrared (NIR) to visible (620–780 nm), while the GaSe<sub>1−x</sub>S<sub>x</sub> series emits from the visible to the blue region (478–620 nm) achieving white light. The GaTe<sub>1−x</sub>S<sub>x</sub> exhibits the most extensive emission range, spanning from NIR to the blue region (478–780 nm). Furthermore, GaTe<sub>1−x</sub>S<sub>x</sub> exhibit high photocatalytic degradation activity for water splitting and organic pollutant degradation. Overall, this review highlights the promising prospects of ternary gallium chalcogenides for advancing future optoelectronics technologies.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100867"},"PeriodicalIF":31.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic irradiation-assisted synthesis, exfoliation and modification of graphene-based materials for energy storage and sensing applications 电磁辐照辅助合成、剥离和改性石墨烯基材料,用于储能和传感应用
IF 31.6 1区 材料科学
Materials Science and Engineering: R: Reports Pub Date : 2024-10-08 DOI: 10.1016/j.mser.2024.100860
Rajesh Kumar , Sumanta Sahoo , Raghvendra Pandey , Ednan Joanni , Ram Manohar Yadav
{"title":"Electromagnetic irradiation-assisted synthesis, exfoliation and modification of graphene-based materials for energy storage and sensing applications","authors":"Rajesh Kumar ,&nbsp;Sumanta Sahoo ,&nbsp;Raghvendra Pandey ,&nbsp;Ednan Joanni ,&nbsp;Ram Manohar Yadav","doi":"10.1016/j.mser.2024.100860","DOIUrl":"10.1016/j.mser.2024.100860","url":null,"abstract":"<div><div>Over the past ten years, there has been a significant advance in the use of light-based photonic energy to synthesize and modify carbon materials for a variety of applications. Graphene-based materials, formed from different carbon sources, possess distinctive structures, exceptional electrical conductivity, mechanical strength, and lightweight features. These characteristics have attracted growing attention from researchers working on electrodes for energy and sensing devices fabricated by direct illumination of carbon-rich materials with electromagnetic (EM) radiation. In this context, we present an overview of the most recent advancements in the use of light for synthesis, modification and doping of novel carbon-based materials. We discuss a broad range of photon-induced irradiation techniques, including microwave (MW), infrared (IR), visible/sunlight, ultraviolet (UV), X-ray, γ-ray. These techniques have been applied to enhance the mechanical, electrical, and thermal properties of carbon and carbon-based composite electrodes. Furthermore, this text emphasizes the latest results on the application of these electrodes made from EM photon-based graphene in the fields of energy and sensing research, with the goal of showcasing the current advancements in this rapidly developing area. Finally, we also discuss the present constraints and potential future advancements of EM-based photo induced graphene production and its applications. In the near future, as a result of the ongoing advances in materials and processing technologies, graphene-based composite electrodes are expected to play a significant role in various important fields.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100860"},"PeriodicalIF":31.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox-active molecules for aqueous electrolytes of energy storage devices: A review on fundamental aspects, current progress, and prospects 用于储能设备水性电解质的氧化还原活性分子:基础方面、当前进展和前景综述
IF 31.6 1区 材料科学
Materials Science and Engineering: R: Reports Pub Date : 2024-10-05 DOI: 10.1016/j.mser.2024.100865
Ming Chen , Ri Chen , Igor Zhitomirsky , Guanjie He , Kaiyuan Shi
{"title":"Redox-active molecules for aqueous electrolytes of energy storage devices: A review on fundamental aspects, current progress, and prospects","authors":"Ming Chen ,&nbsp;Ri Chen ,&nbsp;Igor Zhitomirsky ,&nbsp;Guanjie He ,&nbsp;Kaiyuan Shi","doi":"10.1016/j.mser.2024.100865","DOIUrl":"10.1016/j.mser.2024.100865","url":null,"abstract":"<div><div>The increasing demand for aqueous energy storage (AES) solutions with high energy density, enlarged voltage windows, and extended cycling stability has spurred the development of advanced electrolytes. Redox-active molecules hold the promise for formulating aqueous electrolytes with enhanced electrochemical performance. In this review, we provide a comprehensive overview of established and recently reported studies on redox electrolytes for AES devices. Delving into mechanisms at both molecular and micrometer scales, this review covers the fundamental principles governing the electrolytes, encompassing their physicochemical properties, ion solvation behavior, interfacial modulation, and transport mechanisms. We present an overview of the redox properties of various compounds from different families. While irreversible electron/mass transfer processes can facilitate the passivation of solid electrolyte interfaces, particular attention is given to the reversible redox electrolyte in enhancing the energy performance of AES systems. Redox-active molecules are categorized based on their ability to improve the cycling stability of electrodes, increase the voltage windows of electrolytes, and enhance the energy density of cells. High solubility and reversible redox behavior have been achieved via the molecular design. Trade-offs between the shuttling effect and electrolyte modification as well as controversies on molecular solubility are discussed. By examining these aspects, the review aims to stimulate advanced research in redox-active molecules for AES technologies.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100865"},"PeriodicalIF":31.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase separation in intrinsically stretchable electronics: Mechanisms, functions and applications 本征可拉伸电子器件中的相分离:机理、功能和应用
IF 31.6 1区 材料科学
Materials Science and Engineering: R: Reports Pub Date : 2024-10-04 DOI: 10.1016/j.mser.2024.100863
Hongbo Fu , Jian Lv , Quanpeng Li , Zhuoqun Li , Xiaoliang Chen , Gang He , Zhimao Yang , Chuncai Kong , Fenggang Ren , Yi Lv , Jinyou Shao
{"title":"Phase separation in intrinsically stretchable electronics: Mechanisms, functions and applications","authors":"Hongbo Fu ,&nbsp;Jian Lv ,&nbsp;Quanpeng Li ,&nbsp;Zhuoqun Li ,&nbsp;Xiaoliang Chen ,&nbsp;Gang He ,&nbsp;Zhimao Yang ,&nbsp;Chuncai Kong ,&nbsp;Fenggang Ren ,&nbsp;Yi Lv ,&nbsp;Jinyou Shao","doi":"10.1016/j.mser.2024.100863","DOIUrl":"10.1016/j.mser.2024.100863","url":null,"abstract":"<div><div>Stretchable electronics made from intrinsically stretchable materials have garnered a great deal of attention for future human-friendly electronic applications due to their exceptional mechanical compatibility with soft tissues. However, intrinsically stretchable materials with homogeneous conductive networks often compromise electrical performance to achieve stretchability. By employing phase separation strategies that rationally separate conductive networks and stretchable matrix, the electrical performance of these electronics can be significantly improved without sacrificing stretchability. Meanwhile, phase separation can also be applied to produce diverse porous microstructures, endowing stretchable electronics with desirable functionalities, such as strain buffering, heightened ion transfer, air permeability, and passive cooling. In this article, we reviewed the recent advancements in stretchable electronics fabricated through phase separation strategies. After delving into the driving mechanisms behind various phase-separation strategies, we showcased representative examples to highlight the versatile functionalities of phase-separated structures in stretchable electronic components and devices. Furthermore, we discussed the current challenges and prospects of utilizing phase separation strategies for next-generation intrinsically stretchable electronics.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100863"},"PeriodicalIF":31.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low 3 volt operation of 2D MoTe2 ferroelectric memory transistors with ultrathin pinhole-free P(VDF-TrFE) crystalline film 带有超薄无针孔 P(VDF-TrFE)结晶膜的二维 MoTe2 铁电存储器晶体管的低 3 伏工作电压
IF 31.6 1区 材料科学
Materials Science and Engineering: R: Reports Pub Date : 2024-10-04 DOI: 10.1016/j.mser.2024.100859
Han Joo Lee , Yongjae Cho , Jeehong Park , Hyunmin Cho , Hyowon Han , Cheolmin Park , Yeonjin Yi , Tae Kyu An , Ji Hoon Park , Seongil Im
{"title":"Low 3 volt operation of 2D MoTe2 ferroelectric memory transistors with ultrathin pinhole-free P(VDF-TrFE) crystalline film","authors":"Han Joo Lee ,&nbsp;Yongjae Cho ,&nbsp;Jeehong Park ,&nbsp;Hyunmin Cho ,&nbsp;Hyowon Han ,&nbsp;Cheolmin Park ,&nbsp;Yeonjin Yi ,&nbsp;Tae Kyu An ,&nbsp;Ji Hoon Park ,&nbsp;Seongil Im","doi":"10.1016/j.mser.2024.100859","DOIUrl":"10.1016/j.mser.2024.100859","url":null,"abstract":"<div><div>Organic ferroelectric crystalline polymer, P(VDF-TrFE) has attracted broad attentions due to its lead-free benefits and process convenience. However, it has a long-standing drawback, its process limit in crystalline film thickness, whose minimum is almost fixed as ∼100 nm. Hence, operation voltage of any P(VDF-TrFE)-based ferroelectric memory field-effect transistors (FeFETs) has always been over 10 V. Here, innovatively thinned ∼20 nm P(VDF-TrFE) crystalline layers are fabricated on Pt and Au gate, empowering FeFETs with two dimensional (2D) MoTe<sub>2</sub> channel to operate under minimum 3 V pulse. Such thin crystalline layer is achieved through spin-coating after initial growth of 5 nm-thin crystalline seed layer, P(VDF-TrFE)-brush. This ultrathin P(VDF-TrFE)-brush effectively inhibits the de-wetting problem of P(VDF-TrFE)-solution during spin-coating, leading to good surface-energy matching and pinhole-free conformal coating of classical P(VDF-TrFE). As a result, 3–4 V pulse operations of p-MoTe<sub>2</sub> nonvolatile memory FETs are nicely realized without leakage current loss. These numbers may be regarded as one of the lowest values in report.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100859"},"PeriodicalIF":31.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信