OpenNanoPub Date : 2024-01-03DOI: 10.1016/j.onano.2024.100200
Tom M. Nolte, Bingqing Lu
{"title":"Size and dose of nanoparticles modulate between toxic and medicinal effect on kidney","authors":"Tom M. Nolte, Bingqing Lu","doi":"10.1016/j.onano.2024.100200","DOIUrl":"10.1016/j.onano.2024.100200","url":null,"abstract":"<div><p>To know when a nanoparticle (NP) is toxic and when a NP is medicinal, we need to elucidate the various biochemical interactions exerted by NPs within the body. Clearance is an important pharmacological parameter and property. Once in the body, renal clearance modulates the biological response to NPs and modulate (toxic) stress. Here, we reviewed mechanisms of interaction between NPs and kidney. NPs interact differently with mesangial and endothelial cells, podocytes and macrophages; these cell types work together to maintain homeostasis. Clearance requires NPs to be filtered and (then) ‘scavenged’ by e.g., kidney macrophages. We identified several markers of overall biophysical stress. For example, NPs can mimic transport agents, viruses or systems used by the body to combat them, like vesicles. Thus, NPs interfere with e.g., endocytic and actin-angiotensin systems and osmotic pressure that they regulate. In cases of too much stress, NPs can aggravate disease; in case ‘adequate’ stress is lacking, NPs can act medicinal. In this short review, we also describe kinetics for clearance by kidney and present formulae for NP clearance with a basis in bio-physics. Glomerular filtration rates (GFR) measure energy expenditure and metabolic rate. NPs of differing size may differ in renal scavenging and filtration capacity. NPs affect the GFR in a size and dose-dependent manner. Therefore, modeling clearance and accumulation of NPs by/in kidney ought to be flexible to biological response and <em>in situ</em> NP-induced changes in biophysiological properties.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"16 ","pages":"Article 100200"},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235295202400001X/pdfft?md5=46ea4008069069c1030c450e480db073&pid=1-s2.0-S235295202400001X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139392899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancement in lipid-based nanocomposites for theranostic applications in lung carcinoma treatment","authors":"Viola Colaco, Amrita Arup Roy, Gaurisha Alias Resha Ramnath Naik, Arijit Mondal, Srinivas Mutalik, Namdev Dhas","doi":"10.1016/j.onano.2023.100199","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100199","url":null,"abstract":"<div><p>On a global scale, lung cancer remains a common malignancy and is largest cause of many deaths related to cancer. Despite the significant advancements in lung cancer diagnostic and therapeutic approaches, many individuals exhibit resistant responses to proven therapies. This focuses on the critical need for novel therapeutic methods to be developed and innovated. Recently, nanotechnology has gained a lot of importance for treating malignancy as it helps improve drug delivery, specificity, reduced dose, and efficient elimination. Lipid nanoparticles (LNPs) are nanocarriers with low particle size, which can be modified for specific delivery. The current review focuses on the significance and application of lipid-based theranostic nanoparticles for cancer therapy, components, method of preparation and factors affecting lipid nanoparticle preparation, along with the clinical trials and patents of LNPs. Therapeutic applications in lung cancer therapy include Chemotherapy, photodynamic therapy, immunotherapy, gene therapy, photothermal therapy, and sonodynamic therapy. Diagnostic applications like SPECT, CT, MRI, PET, Optical fluorescence imaging and NIR. As LNPs are being used more frequently in lung cancer therapy, the ongoing research helps in offering solutions to overcome the issues by conventional treatments. Due to their adaptability to customized medical procedures and the use of numerous components, they hold the potential for treating lung cancer. In conclusion, LNPs offer a viable strategy for treating lung cancer by boosting bioavailability, promoting medication delivery, and removing obstacles. For individualised medicine, they can encapsulate a range of therapeutic, such as immunomodulatory medicines, siRNA, and chemotherapeutic medications. Additional study and clinical validation are required to address scalability, long-term safety, and optimised manufacturing techniques for effective application in lung cancer therapy.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100199"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952023000786/pdfft?md5=fde8e6706154857844db7b074cd405c1&pid=1-s2.0-S2352952023000786-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139107791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theranostic siRNA loaded mesoporous silica nanoplatforms: A game changer in gene therapy for cancer treatment","authors":"Anwesha Kanungo , Nigam Sekhar Tripathy , Liza Sahoo , Sarbari Acharya , Fahima Dilnawaz","doi":"10.1016/j.onano.2023.100195","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100195","url":null,"abstract":"<div><p>Growing interest has been seen in non-pathogenic, safe, and effective gene therapy delivery systems. There are many nucleic acid therapies that have been studied to alter the expression of DNA or RNA, such as mRNA, siRNA, antisense DNA, and microRNA (miRNA), of which siRNA has been shown to be useful in blocking specific genes. The development of an efficient nucleic acid delivery method is crucial for molecular diagnostic and therapeutic systems. Mesoporous silica nanoparticles (MSNs) with high porosity, good textural qualities, and biocompatibility have been studied for use in drug delivery systems. They are being utilized more and more in combination therapy, gene silencing, and other biological applications, especially in cancer nanomedicine. MSNs offer efficient drug loading and controlled release, and additions can change their characteristics. They are widely employed in target medication delivery, biosensing, cellular uptake, and diagnostics in the biomedical field. Additionally, they have been connected to theranostic drugs for cancer treatment. This review highlights the current state of knowledge of MSNs and their specialized applications as theranostic agents for cancer management.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100195"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952023000749/pdfft?md5=22960921a00ddf4b9eae9e36d3567ece&pid=1-s2.0-S2352952023000749-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90129963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-11-04DOI: 10.1016/j.onano.2023.100196
Gloria Yi Wei Tseu, Khairul Azfar Kamaruzaman
{"title":"Development of a trilipid-based liposome system as a delivery vector for plasmid DNA in an MCF-7 cell line: Preparation, optimization, physical characterization and In Vitro cytotoxicity evaluation","authors":"Gloria Yi Wei Tseu, Khairul Azfar Kamaruzaman","doi":"10.1016/j.onano.2023.100196","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100196","url":null,"abstract":"<div><p>Breast cancer cases have recorded an increase for the past decade globally. Currently, available treatments affect patients both physically and mentally, prompting the development of a safer alternative treatment, such as gene therapy. Clinical trials mainly utilise viruses to deliver genes though it has adverse immunological issues. Thus, non-viral vectors such as liposomes, an alternative delivery system without immunological problems, are extensively considered. Liposomes, consisting of lipid bilayers made into nanoparticles as a form of the delivery system, encompass a therapeutic gene cargo to protect and efficiently traverse through the biological barriers for effective gene delivery. Various liposome formulations involving DPPC, OCTA and CHOL lipids were investigated. The optimum method was developed for formulating liposomes which involved several methods and techniques producing particles of below ∼300 nm in size and was confirmed via TEM imaging forming spherical agglomeration. The cytotoxicity of the liposome and nucleic acid complexes was determined using MTT cytotoxicity assay with ∼65% cell viability at 2 µg/µl (w/v) concentration, a higher concentration used compared to those published in the literature (µg/ml). Through this work, a formulation of liposome consisting of DPPC:OCTA:CHOL at 18:72:10 ratio with a reporter gene (pEGFP) was developed and has shown promising size properties, zeta potential, encapsulation efficiency with a capacity to use at a higher concentration as a potential non-viral gene therapy carrier for utilization in MCF-7 breast cancer cell line.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100196"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952023000750/pdfft?md5=1c8c082ad69648ce3001ac4dd60a325f&pid=1-s2.0-S2352952023000750-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134834255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-10-31DOI: 10.1016/j.onano.2023.100198
Rakesh Bhaskar , Surya Prakash Pandey , Umesh Kumar , Hyunjin Kim , Santhosh Kumar Jayakodi , Mukesh Kumar Gupta , Sung Soo Han
{"title":"Nanobionics for sustainable crop production: Recent development to regulate plant growth and protection strategies from pests","authors":"Rakesh Bhaskar , Surya Prakash Pandey , Umesh Kumar , Hyunjin Kim , Santhosh Kumar Jayakodi , Mukesh Kumar Gupta , Sung Soo Han","doi":"10.1016/j.onano.2023.100198","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100198","url":null,"abstract":"<div><p>The interface between nanostructured materials and plant cell organelles, such as chloroplasts, and has been recently found to have potential to impart organelles with new functions and enhanced performances. The plant nanobionics-based technologies can be implemented to provide the precise quantity of nutrients and pest control systems to improve the crop productivity as the concerns are growing regarding various agricultural difficulties such as poor nutrient use, stagnant yields, nutrient deficiencies, climate change, and water scarcity. The creation of novel nanomaterial (NM) based-fertilizers and -pesticides has encouraged the assimilation of mineral nutrients as well as to control pests without harming the environment. These nanostructured materials are more effective in releasing nutrients in a site-specific manner, increasing plant uptake efficiency and decreasing nutrient loss, and targeting specific pests than conventional fertilizers and pesticides. This article discusses about recent advancement of innovative nanostructured materials that could transport nutrients, such as carbon-based nanoparticles (NP) and metal-based NP: Iron (Fe), Copper (Cu), Zinc (Zn), Silver (Ag), and Cerium (Ce) etc. We explored the potential development and implementation challenges for these NPs in this article and highlighted the importance of using a systems approach when creating nano bionics-based technology in the near future.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100198"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952023000774/pdfft?md5=010cdb21dc3fd505dfab19985a134349&pid=1-s2.0-S2352952023000774-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134834258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ligand-based surface engineering of nanomaterials: Trends, challenges, and biomedical perspectives","authors":"Ragini Singh , S.P. Srinivas , Mamta Kumawat , Hemant Kumar Daima","doi":"10.1016/j.onano.2023.100194","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100194","url":null,"abstract":"<div><p>Biomedical applications of nanomaterials, especially in diagnosing, management, and treatment of diseases are evolving. However, nanotoxicity remains a major challenge in availing the full biomedical potential of engineered nanomaterials. Nevertheless, recent advancements in the field have suggested that smart engineering of targeting ligands and presence of biomolecules on the surface of nanomaterials can reduce nanotoxicity through differential affinity, enhanced biocompatibility, and efficient internalization. Further, certain ligand-functionalized nanomaterials permit their tracking in cells and tissues over a prolonged period of time, making them suitable for nanomedicine applications. In this seminal review, a range of strategies, which have been employed for surface functionalization of nanomaterials using various biomolecules that confer amide / hydrazone bonds, thiol binding, and surface silanization have been evaluated. The challenges, and impact of surface functionalization of nanomaterials on cellular uptake, drug targeting, molecular imaging, and biocompatibility are also discussed. Finally, nanotoxicity aspects and recommendations of ligand-based surface engineered nanomaterials are detailed for future biomedical applications.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100194"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952023000737/pdfft?md5=3d3ce2db98c6eb566298bdf5420f435e&pid=1-s2.0-S2352952023000737-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91692205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-10-31DOI: 10.1016/j.onano.2023.100197
Ali Bakhshi , Annu Pandey , Zelal Kharaba , Mahtab Razlansari , Saman Sargazi , Razieh Behzadmehr , Abbas Rahdar , Ana M. Díez-Pascual , Sonia Fathi-karkan
{"title":"Microfluidic-based nanoplatforms for cancer theranostic applications: A mini-review on recent advancements","authors":"Ali Bakhshi , Annu Pandey , Zelal Kharaba , Mahtab Razlansari , Saman Sargazi , Razieh Behzadmehr , Abbas Rahdar , Ana M. Díez-Pascual , Sonia Fathi-karkan","doi":"10.1016/j.onano.2023.100197","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100197","url":null,"abstract":"<div><p>Cancer is amongst the foremost causes of death worldwide, and the field of nanotechnology presents promising prospects in terms of diagnostic and therapeutic approaches. Theranostics are nanoparticles (NPs) that possess the ability to combine therapeutic and diagnostic capabilities into a single agent. Nonetheless, the synthesis, characterization, and delivery of NPs for theranostics against cancer present obstacles. By providing swift, responsive, and economical platforms for cancer detection and treatment, microfluidic systems based on nanomaterials can overcome these obstacles. A synopsis of recent developments in microfluidic-assisted theranostic nanosystems for the treatment of various malignancies is provided in this mini-review. In addition to microfluidic system-based cancer sensing methods (optical, electrochemical, mechanical, and thermal), efficacious treatment approaches (gene therapy, drug delivery, sonodynamic therapy, etc.) are examined. Further, the potential and limitations of this innovative technique are analyzed, and its potential clinical applications in the future are proposed.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100197"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71729349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-10-21DOI: 10.1016/j.onano.2023.100193
Felipe Ocampo Osorio , Esteban Noé Villanueva Badillo , Dariana Geraldine Erazo Rondón , Erika Tatiana Muñoz Arango , Abilo Andrés Velásquez Salazar , Alvaro Andrés Velasquez Torres , Oscar Moscoso Londoño , Elisabeth Restrepo Parra , César Leandro Londoño Calderón
{"title":"Drug loading comparison of commercial ibuprofen on magnetite nanoparticles surface by UV–Vis spectrophotometry and acid-alkali titration by a factorial design of experiments","authors":"Felipe Ocampo Osorio , Esteban Noé Villanueva Badillo , Dariana Geraldine Erazo Rondón , Erika Tatiana Muñoz Arango , Abilo Andrés Velásquez Salazar , Alvaro Andrés Velasquez Torres , Oscar Moscoso Londoño , Elisabeth Restrepo Parra , César Leandro Londoño Calderón","doi":"10.1016/j.onano.2023.100193","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100193","url":null,"abstract":"<div><p>The drug efficacy for the pathologies treatments depends on several physicochemical properties of the drug. Among these, solubility is one of the most important and is directly related to the bioavailability of the drug. Ibuprofen is a popular drug used for the treatment of different diseases. However, its dissolution rate in aqueous media is limited, which causes undesirable adverse effects on the patient. One of the possibilities to solve this challenge is loading ibuprofen on the surface of the nanoparticles for drug delivery. However, some challenges related to complicated experimental procedures, expensive chemical precursors, the techniques for ibuprofen quantification, and the loading efficiency continue to be a problem. This work reports the synthesis of magnetite nanoparticles and the straightforward loading with commercial ibuprofen in a mixed ethanol/water solution without intermediate surfactants, stabilizers, or linkers. XRD, SEM, FT-IR, Magnetometry, UV–Vis Spectrophotometry, and DLS techniques allowed for determining the samples' structure, morphology, functional groups, magnetism, and agglomerate size. A complete factorial Design of Experiments allowed for comparing the encapsulation efficiency for two exposure and centrifugation times (20 and 40 min) by UV–VIS and Acid-alkali titration. The results suggest that the magnetic separation and centrifugation (< 2000 <em>RPM</em>) were inappropriate for nanoparticle decantation. This produces an underestimation of the ibuprofen adsorbed by the nanoparticles. Under our experimental conditions, 20 min is enough to achieve maximum encapsulation efficiency (14<em>%</em>) without surfactants or binders.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100193"},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49739003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-10-13DOI: 10.1016/j.onano.2023.100190
Hnin Ei Thu , Mohamed Haider , Shahzeb Khan , Mohammad Sohail , Zahid Hussain
{"title":"Nanotoxicity induced by nanomaterials: A review of factors affecting nanotoxicity and possible adaptations","authors":"Hnin Ei Thu , Mohamed Haider , Shahzeb Khan , Mohammad Sohail , Zahid Hussain","doi":"10.1016/j.onano.2023.100190","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100190","url":null,"abstract":"<div><p>Owing to their unique characteristic features (e.g., nano-scaled dimensions, surface charge, surface chemistry, thermodynamics, morphology, etc.), diversity of functionalization, and great penetrability to body tissues, nanomaterials have been widely employed in various fields including medical and health sciences. The feasibility and significance of nanomaterials has been well-explored as drug delivery devices, diagnostic tools, vaccination, prognostic agents, and gene therapy; however, substantial evidence on safety of these nanomaterials is lacking. The aim of this study was critical evaluation of available literature on the safety concerns of various nanomaterials and conceptualization of vital factors which might help in mitigating the toxicity caused by these nanomaterials. It has been established that various factors such as particle size, dosage regimen, route of exposure, surface chemistry, degree of aggregation, transmembrane diffusivity, excretion pathway, and immunogenicity play key role in inducing the nanotoxicity. By controlling these factors, interaction of nanomaterials with biological tissues, their penetrability, diffusivity, absorption, distribution, recognition by the immune players, duration of deposition into various body tissues, and clearance from the body can be controlled to avert unintended nanotoxicity. Furthermore, it has been identified that surface functionalization of nanomaterials with diverse moieties such as sodium citrate, polyvinylpyrrolidone (PVP) and/or surfactants could significantly downregulate their nanotoxicity potential and improve their safety profile. Factually, nanotoxicity is a grave concern which should be consider while designing of any nanomaterials to circumvent their detrimental interactions with various biological tissues.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100190"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49719195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phyto-derived metal nanoparticles: Prominent tool for biomedical applications","authors":"P.R. Bhilkar , A.S. Bodhne , S.T. Yerpude , R.S. Madankar , S.R. Somkuwar , A.R. Daddemal-Chaudhary , A.P. Lambat , M. Desimone , Rohit Sharma , R.G. Chaudhary","doi":"10.1016/j.onano.2023.100192","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100192","url":null,"abstract":"<div><p>Nanoparticles (NPs), despite of very small in size have extraordinary power and functional ability, forms the backbone of nanomaterials science, and utilizes it in diverse fields. Many conventional methods can be employed for the fabrication of NPs, but it required either high energy with producing toxic byproducts that degrades an environment. Therefore, a green approach is needed to save an environment. Green methods provide the simple, straightforward, cost-effective and environmentally-safe approach for the NPs synthesis. Plant derived NPs, is one of the best and supreme methods with green and sustainable routes for preparation of NPs. As plant derived metal NPs gains the more attention due to their green synthesis approach and significant for biomedical appliances. In the present review, we concentrated on synthesis of plant derived metal NPs (Ag, Au, Cu, Ni, Zn and Ti) with their morphologies and biomedical applications. Also discussed the therapeutic applications and future perspective of plant derived metal NPs.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100192"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49719191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}