可持续作物生产的纳米仿生学:调节植物生长和害虫保护策略的最新发展

Q2 Pharmacology, Toxicology and Pharmaceutics
Rakesh Bhaskar , Surya Prakash Pandey , Umesh Kumar , Hyunjin Kim , Santhosh Kumar Jayakodi , Mukesh Kumar Gupta , Sung Soo Han
{"title":"可持续作物生产的纳米仿生学:调节植物生长和害虫保护策略的最新发展","authors":"Rakesh Bhaskar ,&nbsp;Surya Prakash Pandey ,&nbsp;Umesh Kumar ,&nbsp;Hyunjin Kim ,&nbsp;Santhosh Kumar Jayakodi ,&nbsp;Mukesh Kumar Gupta ,&nbsp;Sung Soo Han","doi":"10.1016/j.onano.2023.100198","DOIUrl":null,"url":null,"abstract":"<div><p>The interface between nanostructured materials and plant cell organelles, such as chloroplasts, and has been recently found to have potential to impart organelles with new functions and enhanced performances. The plant nanobionics-based technologies can be implemented to provide the precise quantity of nutrients and pest control systems to improve the crop productivity as the concerns are growing regarding various agricultural difficulties such as poor nutrient use, stagnant yields, nutrient deficiencies, climate change, and water scarcity. The creation of novel nanomaterial (NM) based-fertilizers and -pesticides has encouraged the assimilation of mineral nutrients as well as to control pests without harming the environment. These nanostructured materials are more effective in releasing nutrients in a site-specific manner, increasing plant uptake efficiency and decreasing nutrient loss, and targeting specific pests than conventional fertilizers and pesticides. This article discusses about recent advancement of innovative nanostructured materials that could transport nutrients, such as carbon-based nanoparticles (NP) and metal-based NP: Iron (Fe), Copper (Cu), Zinc (Zn), Silver (Ag), and Cerium (Ce) etc. We explored the potential development and implementation challenges for these NPs in this article and highlighted the importance of using a systems approach when creating nano bionics-based technology in the near future.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100198"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952023000774/pdfft?md5=010cdb21dc3fd505dfab19985a134349&pid=1-s2.0-S2352952023000774-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanobionics for sustainable crop production: Recent development to regulate plant growth and protection strategies from pests\",\"authors\":\"Rakesh Bhaskar ,&nbsp;Surya Prakash Pandey ,&nbsp;Umesh Kumar ,&nbsp;Hyunjin Kim ,&nbsp;Santhosh Kumar Jayakodi ,&nbsp;Mukesh Kumar Gupta ,&nbsp;Sung Soo Han\",\"doi\":\"10.1016/j.onano.2023.100198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The interface between nanostructured materials and plant cell organelles, such as chloroplasts, and has been recently found to have potential to impart organelles with new functions and enhanced performances. The plant nanobionics-based technologies can be implemented to provide the precise quantity of nutrients and pest control systems to improve the crop productivity as the concerns are growing regarding various agricultural difficulties such as poor nutrient use, stagnant yields, nutrient deficiencies, climate change, and water scarcity. The creation of novel nanomaterial (NM) based-fertilizers and -pesticides has encouraged the assimilation of mineral nutrients as well as to control pests without harming the environment. These nanostructured materials are more effective in releasing nutrients in a site-specific manner, increasing plant uptake efficiency and decreasing nutrient loss, and targeting specific pests than conventional fertilizers and pesticides. This article discusses about recent advancement of innovative nanostructured materials that could transport nutrients, such as carbon-based nanoparticles (NP) and metal-based NP: Iron (Fe), Copper (Cu), Zinc (Zn), Silver (Ag), and Cerium (Ce) etc. We explored the potential development and implementation challenges for these NPs in this article and highlighted the importance of using a systems approach when creating nano bionics-based technology in the near future.</p></div>\",\"PeriodicalId\":37785,\"journal\":{\"name\":\"OpenNano\",\"volume\":\"15 \",\"pages\":\"Article 100198\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352952023000774/pdfft?md5=010cdb21dc3fd505dfab19985a134349&pid=1-s2.0-S2352952023000774-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OpenNano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352952023000774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952023000774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

纳米结构材料与植物细胞器(如叶绿体)之间的界面,最近被发现具有赋予细胞器新功能和增强性能的潜力。基于植物纳米仿生学的技术可以用于提供精确数量的养分和害虫控制系统,以提高作物生产力,因为人们越来越关注各种农业困难,如养分利用不良、产量停滞、养分缺乏、气候变化和水资源短缺。新型纳米材料(NM)肥料和农药的发明促进了矿物养分的吸收,并在不损害环境的情况下控制害虫。与传统肥料和农药相比,这些纳米结构材料在以特定地点的方式释放养分、提高植物吸收效率和减少养分损失以及针对特定害虫方面更有效。本文讨论了碳基纳米颗粒(NP)和金属基纳米颗粒(铁(Fe)、铜(Cu)、锌(Zn)、银(Ag)和铈(Ce)等新型营养物质纳米结构材料的最新进展。我们在本文中探讨了这些NPs的潜在开发和实施挑战,并强调了在不久的将来创建基于纳米仿生学的技术时使用系统方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanobionics for sustainable crop production: Recent development to regulate plant growth and protection strategies from pests

Nanobionics for sustainable crop production: Recent development to regulate plant growth and protection strategies from pests

The interface between nanostructured materials and plant cell organelles, such as chloroplasts, and has been recently found to have potential to impart organelles with new functions and enhanced performances. The plant nanobionics-based technologies can be implemented to provide the precise quantity of nutrients and pest control systems to improve the crop productivity as the concerns are growing regarding various agricultural difficulties such as poor nutrient use, stagnant yields, nutrient deficiencies, climate change, and water scarcity. The creation of novel nanomaterial (NM) based-fertilizers and -pesticides has encouraged the assimilation of mineral nutrients as well as to control pests without harming the environment. These nanostructured materials are more effective in releasing nutrients in a site-specific manner, increasing plant uptake efficiency and decreasing nutrient loss, and targeting specific pests than conventional fertilizers and pesticides. This article discusses about recent advancement of innovative nanostructured materials that could transport nutrients, such as carbon-based nanoparticles (NP) and metal-based NP: Iron (Fe), Copper (Cu), Zinc (Zn), Silver (Ag), and Cerium (Ce) etc. We explored the potential development and implementation challenges for these NPs in this article and highlighted the importance of using a systems approach when creating nano bionics-based technology in the near future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
OpenNano
OpenNano Medicine-Pharmacology (medical)
CiteScore
4.10
自引率
0.00%
发文量
63
审稿时长
50 days
期刊介绍: OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信