{"title":"Fabrication and evaluation of poly(ε-caprolactone) based nanofibrous scaffolds loaded with homoeopathic mother tincture of Syzygium cumini for wound healing applications","authors":"Deiviga Murugan , Ankitha Suresh , Goutam Thakur , Bhisham Narayan Singh","doi":"10.1016/j.onano.2023.100189","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100189","url":null,"abstract":"<div><p>Traditional wound healing substitutes loaded with bioactive molecules such as drugs, growth factors, and so on have been extensively researched in order to promote better wound healing and restore normal tissue function. The use of nanofibrous scaffolds has enhanced the biomaterial performance, thereby offering a promising solution as wound dressings in the field of skin tissue engineering. In the present study, the homoeopathic mother tincture extract of <em>Syzygium cumini</em> incorporated in poly(ε-caprolactone) nanofibrous scaffolds were fabricated in the concentration range of 5 %–20 % (w/w) and its various physicochemical and biological properties were evaluated. The fabricated nanofibers structurally mimicked the extracellular matrix, with enhanced hydrophilicity for better cellular attachment and proliferation. These scaffolds also showed anti-biofilm activity against <em>P. aeruginosa</em> and <em>S. aureus</em> and exhibited superior anti-oxidant activity. Furthermore, the extract incorporation was observed to be beneficial in cell adhesion, viability, growth and proliferation. This novel poly(ε-caprolactone) nanofibrous scaffold loaded with homoeopathic mother tincture extract of <em>Syzygium cumini</em> might be a suitable biomaterial for clinical management of wounds and reconstruction of damaged/diseased skin tissues.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100189"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49735457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-10-09DOI: 10.1016/j.onano.2023.100191
Chwadaka Pohshna, Damodhara Rao Mailapalli
{"title":"Modeling the particle size of nanomaterials synthesized in a planetary ball mill","authors":"Chwadaka Pohshna, Damodhara Rao Mailapalli","doi":"10.1016/j.onano.2023.100191","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100191","url":null,"abstract":"<div><p>Planetary ball milling (PBM) synthesis of nanoparticles involves conducting several trials to obtain the desired size. Mathematical modeling of the PBM process is a tool to tackle the issue of PBM synthesis. In this study, a conceptual model was proposed by integrating the kinematics of the PBM process along with the breakage mechanism of a material to determine particle size at different milling parameters and hence be able to select appropriate milling parameters for PBM synthesis. The conceptual model was tested for hydroxyapatite, zeolite and fly ash material. The conceptual model successfully simulated the size-reduction mechanism in PBM and predicted the particle size of the tested material with good accuracy. The most sensitive milling parameters were found to be the milling speed followed by the vial volume, milling time, and ball to powder ratio. The material properties input parameters were observed to be less sensitive than the milling parameters. The PBM model may be used as a prediction tool for determining the appropriate milling parameters needed in synthesizing any nanomaterial by knowing the material properties.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100191"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49719511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-09-12DOI: 10.1016/j.onano.2023.100187
Osama M. Darwesh , Marwa A. Shalaby , Mohamed M. Gharieb , Ibrahim A. Matter
{"title":"Application of the novel Cu-resistant fungus Aspergillus niger A3 in bioremoval of Cu-NPs from its aqueous solutions","authors":"Osama M. Darwesh , Marwa A. Shalaby , Mohamed M. Gharieb , Ibrahim A. Matter","doi":"10.1016/j.onano.2023.100187","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100187","url":null,"abstract":"<div><p>Copper is an essential element for the metabolism of plants and animals, and has wide applications in the agricultural and industrial sectors. On the other hand, copper nanoparticles (Cu-NPs) have become widely used for research and application, which increases the chances of its spread and potential environmental exposure to this element. Therefore, in this study, the bioremediation bioreactor for the removing of Cu-NPs based on a fungal strain (<em>Aspergillus niger</em>) was introduced. <em>A. niger</em> isolate MR3 with accession No. OP861660.1 after molecular identification was selected as a promising isolate for copper resistance and Cu-NPs bioremoval. The impact of biomass age, pH, and contact time was investigated in order to establish the ideal biosorption conditions. The results showed a high Cu-NPs removal via two-days-old <em>A. niger</em> biomass, where the bioremoval percentage reached 66.8 % at pH value 7 after a contact time of 10 min. Dead biomass of <em>A. niger</em> achieved the highest Cu-NPs removal rate, eliminating 68.2 % compared with both living and alginate beads-immobilized biomass. Thus, bioremoval experiments using dead biomass were performed in a bioreactor for sequential removal of Cu-NPs. The bioremoval capacity reached 97 % under optimized conditions from synthetic wastewater after a contacting time of 10 min. Thus, the present work considered the first report for bioremediation of Cu-NPs into bioreactor.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100187"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49719580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-vitro antioxidant, antidiabetic, anticholinergic activity of iron/copper nanoparticles synthesized using Strobilanthes cordifolia leaf extract","authors":"Dharmalingam Kirubakaran , Kuppusamy Selvam , Palanisamy Prakash , Muthugounder Subaramanian Shivakumar , Manickam Rajkumar","doi":"10.1016/j.onano.2023.100188","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100188","url":null,"abstract":"<div><p>The <em>Strobilanthes cordifolia</em> plant, a member of the Acanthaceae family, has been extensively studied due to its wide range of biological properties. This particular research focused on the green synthesis of FeNPs/CuNPs and evaluated the effectiveness of the experiment through various characterization techniques, including UV, FTIR, XRD, and SEM with EDAX. The UV analysis provided valuable insights, showing that the synthesized nanoparticles had the highest absorption values at 462nm for FeNPs and 438nm for CuNPs. FTIR analysis confirmed the presence of different functional groups, while XRD measurements validated their crystalline nature. SEM data revealed the diverse shapes of the nanoparticles, including rods and spherical shapes. Additionally, EDAX analysis confirmed the presence of Fe and Cu elements in the biosynthesized nanoparticles. The antibacterial activity of FeNPs and CuNPs against <em>Staphylococcus aureus</em> and <em>Escherichia coli</em> showed significant inhibition. Moreover, the nanoparticles demonstrated strong antioxidant activity, as evidenced by their effective inhibition in DPPH and ABTS assays. Their potential as anti-diabetic agents was also explored, with assessments of their inhibitory effects on α-Amylase and α-Glucosidase enzymes. Additionally, the nanoparticles displayed inhibitory effects on anti-cholinergic enzymes such as AChE and BChE. Furthermore, comprehensive toxicological studies revealed a higher level of mosquito larvicidal activity against <em>Aedes aegypti, Anopheles stephensi</em>, and <em>Culex quinquefasciatus</em>. Among these, the FeNPs exhibited a larval mortality rate of 95% in <em>Cx. Quinquefasciatus</em>, while the CuNPs showed a rate of 93%. In conclusion, this study demonstrated that FeNPs/CuNPs possess favorable characteristics and significant potential for various biomedical applications.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100188"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49719578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-09-01DOI: 10.1016/j.onano.2023.100180
Abishek Wadhwa , Thomas R. Bobak , Lennart Bohrmann , Reka Geczy , Sathiya Sekar , Gowtham Sathyanarayanan , Jörg P. Kutter , Henrik Franzyk , Camilla Foged , Katayoun Saatchi , Urs O. Häfeli
{"title":"Pulmonary delivery of siRNA-loaded lipid-polymer hybrid nanoparticles: Effect of nanoparticle size","authors":"Abishek Wadhwa , Thomas R. Bobak , Lennart Bohrmann , Reka Geczy , Sathiya Sekar , Gowtham Sathyanarayanan , Jörg P. Kutter , Henrik Franzyk , Camilla Foged , Katayoun Saatchi , Urs O. Häfeli","doi":"10.1016/j.onano.2023.100180","DOIUrl":"10.1016/j.onano.2023.100180","url":null,"abstract":"<div><p>Nanomedicines based on nanoparticles rely both on the potency of the drug as well as the efficiency of the delivery system, for which particle size plays a crucial role. For the intracellular delivery of small interference RNA (siRNA), lipid-polymer nanoparticle (LPN) hybrid systems constitute a safe and highly effective class of delivery systems. In the present study, we employ a microfluidics method for the manufacturing of spherical siRNA-loaded LPNs for pulmonary delivery with distinct size distributions with average diameters of approximately 70, 110, and 220 nm. We designed an optically clear, inexpensive thiol-ene polymeric microfluidic chip prototype that is compatible with standard ‘soft-lithography’ techniques, allows for replica molding, and is resistant to harsh solvents. By using SPECT/CT in vivo imaging, we show comparable pulmonary clearance patterns of all three differently sized LPN formulations following intratracheal administration. Also, negligible accumulation in the liver was observed.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100180"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45586156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carotenoid containing cationic nanoparticles for effective therapy for suppressing oxidative stress: An intranasal approach","authors":"Namdev Dhas , Atul Garkal , Ritu Kudarha , Srinivas Hebbar , Srinivas Mutalik , Tejal Mehta","doi":"10.1016/j.onano.2023.100172","DOIUrl":"10.1016/j.onano.2023.100172","url":null,"abstract":"<div><p>Alzheimer's disease is the most common type of dementia. Oxidative stress is involved in the progression of aging and Alzheimer's disease. It is known that lutein is a carotenoid having antioxidant properties. The present research explores Lutein loaded chitosan nanoparticles for Suppressing Oxidative Stress in the treatment of Alzheimer's. The developed nanoparticles are administered through the nose to target brain via nose-to-brain pathway. For optimization of formulation a systematic QbD approach was used. The developed nanoparticles further characterized for Physicochemical parameters, Morphology, In-vitro drug releases, Ex-vivo diffusion, In-vitro Cell viability, cellular uptake, In-vitro BBB Permeation, antioxidant properties, In-vivo biodistribution, and stability study. The developed nanoparticles' surface morphology suggested homogeneously dispersed spherical nanoparticles having < 200 nm size. The drug release study demonstrate the controlled release of lutein for more than 96 h while less than 50% lutein was released after 24 h in an <em>ex-vivo</em> diffusion study. The cell cytotoxicity assay confirms the nontoxicity of <span>l</span>-CNPs. The cellular uptake study shows enhanced internalization of <span>l</span>-CNPs through the caveolae-mediated endocytosis pathway. The ROS generation confirmed the absence of any significant ROS generation nanoparticles. The antioxidant assay shows significant ROS scavenging activity of <span>l</span>-CNPs. <em>In-vitro</em> BBB permeation demonstrates the efficient passage of <span>l</span>-CNPs through BBB compared to pure lutein. This was further supported by bio-distribution demonstrating the deposition of nanoparticles in the brain through nasal administration. The acquired outcomes prove the possible activities of lutein-loaded <span>l</span>-CNPs for reducing oxidative stress in the brain for Alzheimer's treatment.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100172"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42953694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-09-01DOI: 10.1016/j.onano.2023.100173
Chiou Chyi Lim, Le Yi Chia, Palanirajan Vijayaraj Kumar
{"title":"Dendrimer-based nanocomposites for the production of RNA delivery systems","authors":"Chiou Chyi Lim, Le Yi Chia, Palanirajan Vijayaraj Kumar","doi":"10.1016/j.onano.2023.100173","DOIUrl":"10.1016/j.onano.2023.100173","url":null,"abstract":"<div><p>A novel approach to treating cancer has been revealed to be effective cancer vaccination. It has also been demonstrated that nucleic acid therapies such as mRNA and siRNA are very efficient in the treatment of cancer. However, the instability of mRNA makes a delivery system necessary to reach the target sites. Dendrimers have emerged as being of important interest in healthcare due to their ideal characteristic of having a very strong drug delivery capacity to become carriers. The dendrimer's center can be loaded with specific pharmaceutical active ingredients, or they can be bonded to the surface. RNA delivery systems that transport siRNA, mRNA, and other forms of RNA can be made using dendrimers. This review article focuses on several dendrimer-based RNA delivery systems, such as dendrimers modified with PEG, mannosylated dendrimers, dendrisomes, amphiphilic dendrimer vectors, magnetic nanoparticles modified with dendrimers, peptide dendrimers, and gold nanoparticles coated with dendrimers.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100173"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45243847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-09-01DOI: 10.1016/j.onano.2023.100168
Sammi Boher , Rooh Ullah , Mustafa Tuzen , Tawfik A. Saleh
{"title":"Metal doped nanocomposites for detection of pesticides and phenolic compounds by colorimetry: Trends and challenges","authors":"Sammi Boher , Rooh Ullah , Mustafa Tuzen , Tawfik A. Saleh","doi":"10.1016/j.onano.2023.100168","DOIUrl":"10.1016/j.onano.2023.100168","url":null,"abstract":"<div><p>Colorimetric methods are classical techniques that have been broadly subjected to and applied for the detection of many analytes. The method is low cost, simple, practically active, and suitable to determine the sample due to color changes which are accessed visually even at low concentrations of target analysis. Hence, different methods are applied for detecting and determining pesticides (insecticides) and phenolic compounds (bisphenol A). Moreover, researchers detected OCPs (Organochloride pesticides) in breast milk and adipose tissues, which may exhibit estrogenic, and antiestrogenic activities mostly associated with breast cancer. The common thing between two the analytes is nature because they both show endocrine-disrupting properties. Bisphenol A (phenolic compound) is commonly used in the high-volume production of monomers and plastics. Bisphenol A is used to manufacture polycarbonate plastics, used in food cans coating, baby formula bottles, milk containers, paints, etc. Pesticides and phenolic compounds identification methods can be sluggish and need extremely skilled workforces to function cultured instruments that are mostly too expensive, delicate, or immense to a position outside of a devoted laboratory facility. This review deals with the discriminatory and low-cost method for the colorimetric detection of pesticides and phenolic compounds (bisphenol A) with different bio-synthesized metals and metal-doped nanocomposites. Based on existing publications, using colorimetry with nanocomposites provides low detection limits and good reproducibility for the detection of pesticides and phenolic compounds in various samples such as food samples. These results serve as a guide for controlling pesticides and phenolic chemicals in food processing, lowering the dangers involved.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100168"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44630649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-09-01DOI: 10.1016/j.onano.2023.100170
Aida Hajibonabi , Mina Yekani , Simin Sharifi , Javid Sadri Nahad , Solmaz Maleki Dizaj , Mohammad Yousef Memar
{"title":"Antimicrobial activity of nanoformulations of carvacrol and thymol: New trend and applications","authors":"Aida Hajibonabi , Mina Yekani , Simin Sharifi , Javid Sadri Nahad , Solmaz Maleki Dizaj , Mohammad Yousef Memar","doi":"10.1016/j.onano.2023.100170","DOIUrl":"10.1016/j.onano.2023.100170","url":null,"abstract":"<div><p>Thymol and carvacrol are aromatic compounds derived from plants that exhibit considerable broad-spectrum antimicrobial effects. They have also shown extensive biological effects, including antispasmodic, anti-inflammatory, and anti-carcinogenic. Carvacrol and thymol also have pleasant smells, tastes, and potent antioxidant effects. Therefore, biological effects, along with their favorable toxicity, make thymol and carvacrol an option as an additive to inhibit microbial spoilage of foods and potent antimicrobial agents against antibiotic-resistant bacteria. However, volatility, low stability, and high hydrophobicity are some of the limitations of carvacrol and thymol, which limit their application. To increase the efficacy of thymol and carvacrol, especially antimicrobial properties, using a drug delivery system might be a practical option. Encapsulation of the essential oils into appropriated nanocarriers may decrease their potential limitations. Carvacrol and thymol-encapsulated nanomaterials have been shown to have more solubility and increased antibacterial effects. Here, we provide a brief review of the antimicrobial effects of carvacrol and thymol nanoformulation to give a prospect on their applications for future studies as natural antimicrobial agents and food additives.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100170"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49177728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-09-01DOI: 10.1016/j.onano.2023.100171
Arthur Cavalcante Hatae , Cesar Augusto Roque-Borda , Fernando Rogério Pavan
{"title":"Strategies for lipid-based nanocomposites with potential activity against Mycobacterium tuberculosis: Microbial resistance challenge and drug delivery trends","authors":"Arthur Cavalcante Hatae , Cesar Augusto Roque-Borda , Fernando Rogério Pavan","doi":"10.1016/j.onano.2023.100171","DOIUrl":"10.1016/j.onano.2023.100171","url":null,"abstract":"<div><p><em>Mycobacterium tuberculosis</em> (MTB), the causative agent of tuberculosis, stands as an immensely devastating and persistently relevant pathogen, claiming the lives of millions each year. This infectious bacterium remains a formidable global health challenge, necessitating urgent attention and comprehensive strategies to combat its profound impact on public health. MTB is a finicky bacterium that manages to sneak into macrophages and fibroblasts to avoid being eliminated. Current first-line treatments allow the control of the spread of an active MTB, but are not capable of effectively controlling when MTB is in its latent phase and struggle against MTB resistant strains. Lipid-based nanoparticles have gained significant attention in the field of tuberculosis nanotechnology treatments, owing to their compelling logical underpinnings, remarkable merits, and acknowledged demerits. These nanoparticles offer a rational approach by harnessing the unique properties of lipids, such as biocompatibility and stability, to encapsulate and protect anti-tuberculosis drugs. Their inherent ability to actively target infected macrophages holds immense promise for precise drug delivery to the infection site, enhancing therapeutic efficacy. However, it is crucial to consider potential limitations, such as the restricted payload capacity due to their small size and challenges in achieving sustained drug release. Despite these challenges, lipid-based nanotechnology represents an exciting frontier for combating drug resistance and advancing tuberculosis treatment strategies, warranting further exploration and development in this field. In addition, we emphasize the characteristics of lipid-based nanoparticles with the ability to improve the administration, stability, and dosage of these molecules. New modified systems are expected to be successful in the coming years as nanotechnology has improved various treatments in other diseases.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100171"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48482738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}