OpenNanoPub Date : 2023-11-04DOI: 10.1016/j.onano.2023.100196
Gloria Yi Wei Tseu, Khairul Azfar Kamaruzaman
{"title":"Development of a trilipid-based liposome system as a delivery vector for plasmid DNA in an MCF-7 cell line: Preparation, optimization, physical characterization and In Vitro cytotoxicity evaluation","authors":"Gloria Yi Wei Tseu, Khairul Azfar Kamaruzaman","doi":"10.1016/j.onano.2023.100196","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100196","url":null,"abstract":"<div><p>Breast cancer cases have recorded an increase for the past decade globally. Currently, available treatments affect patients both physically and mentally, prompting the development of a safer alternative treatment, such as gene therapy. Clinical trials mainly utilise viruses to deliver genes though it has adverse immunological issues. Thus, non-viral vectors such as liposomes, an alternative delivery system without immunological problems, are extensively considered. Liposomes, consisting of lipid bilayers made into nanoparticles as a form of the delivery system, encompass a therapeutic gene cargo to protect and efficiently traverse through the biological barriers for effective gene delivery. Various liposome formulations involving DPPC, OCTA and CHOL lipids were investigated. The optimum method was developed for formulating liposomes which involved several methods and techniques producing particles of below ∼300 nm in size and was confirmed via TEM imaging forming spherical agglomeration. The cytotoxicity of the liposome and nucleic acid complexes was determined using MTT cytotoxicity assay with ∼65% cell viability at 2 µg/µl (w/v) concentration, a higher concentration used compared to those published in the literature (µg/ml). Through this work, a formulation of liposome consisting of DPPC:OCTA:CHOL at 18:72:10 ratio with a reporter gene (pEGFP) was developed and has shown promising size properties, zeta potential, encapsulation efficiency with a capacity to use at a higher concentration as a potential non-viral gene therapy carrier for utilization in MCF-7 breast cancer cell line.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100196"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952023000750/pdfft?md5=1c8c082ad69648ce3001ac4dd60a325f&pid=1-s2.0-S2352952023000750-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134834255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-10-31DOI: 10.1016/j.onano.2023.100198
Rakesh Bhaskar , Surya Prakash Pandey , Umesh Kumar , Hyunjin Kim , Santhosh Kumar Jayakodi , Mukesh Kumar Gupta , Sung Soo Han
{"title":"Nanobionics for sustainable crop production: Recent development to regulate plant growth and protection strategies from pests","authors":"Rakesh Bhaskar , Surya Prakash Pandey , Umesh Kumar , Hyunjin Kim , Santhosh Kumar Jayakodi , Mukesh Kumar Gupta , Sung Soo Han","doi":"10.1016/j.onano.2023.100198","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100198","url":null,"abstract":"<div><p>The interface between nanostructured materials and plant cell organelles, such as chloroplasts, and has been recently found to have potential to impart organelles with new functions and enhanced performances. The plant nanobionics-based technologies can be implemented to provide the precise quantity of nutrients and pest control systems to improve the crop productivity as the concerns are growing regarding various agricultural difficulties such as poor nutrient use, stagnant yields, nutrient deficiencies, climate change, and water scarcity. The creation of novel nanomaterial (NM) based-fertilizers and -pesticides has encouraged the assimilation of mineral nutrients as well as to control pests without harming the environment. These nanostructured materials are more effective in releasing nutrients in a site-specific manner, increasing plant uptake efficiency and decreasing nutrient loss, and targeting specific pests than conventional fertilizers and pesticides. This article discusses about recent advancement of innovative nanostructured materials that could transport nutrients, such as carbon-based nanoparticles (NP) and metal-based NP: Iron (Fe), Copper (Cu), Zinc (Zn), Silver (Ag), and Cerium (Ce) etc. We explored the potential development and implementation challenges for these NPs in this article and highlighted the importance of using a systems approach when creating nano bionics-based technology in the near future.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100198"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952023000774/pdfft?md5=010cdb21dc3fd505dfab19985a134349&pid=1-s2.0-S2352952023000774-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134834258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ligand-based surface engineering of nanomaterials: Trends, challenges, and biomedical perspectives","authors":"Ragini Singh , S.P. Srinivas , Mamta Kumawat , Hemant Kumar Daima","doi":"10.1016/j.onano.2023.100194","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100194","url":null,"abstract":"<div><p>Biomedical applications of nanomaterials, especially in diagnosing, management, and treatment of diseases are evolving. However, nanotoxicity remains a major challenge in availing the full biomedical potential of engineered nanomaterials. Nevertheless, recent advancements in the field have suggested that smart engineering of targeting ligands and presence of biomolecules on the surface of nanomaterials can reduce nanotoxicity through differential affinity, enhanced biocompatibility, and efficient internalization. Further, certain ligand-functionalized nanomaterials permit their tracking in cells and tissues over a prolonged period of time, making them suitable for nanomedicine applications. In this seminal review, a range of strategies, which have been employed for surface functionalization of nanomaterials using various biomolecules that confer amide / hydrazone bonds, thiol binding, and surface silanization have been evaluated. The challenges, and impact of surface functionalization of nanomaterials on cellular uptake, drug targeting, molecular imaging, and biocompatibility are also discussed. Finally, nanotoxicity aspects and recommendations of ligand-based surface engineered nanomaterials are detailed for future biomedical applications.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100194"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952023000737/pdfft?md5=3d3ce2db98c6eb566298bdf5420f435e&pid=1-s2.0-S2352952023000737-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91692205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-10-31DOI: 10.1016/j.onano.2023.100197
Ali Bakhshi , Annu Pandey , Zelal Kharaba , Mahtab Razlansari , Saman Sargazi , Razieh Behzadmehr , Abbas Rahdar , Ana M. Díez-Pascual , Sonia Fathi-karkan
{"title":"Microfluidic-based nanoplatforms for cancer theranostic applications: A mini-review on recent advancements","authors":"Ali Bakhshi , Annu Pandey , Zelal Kharaba , Mahtab Razlansari , Saman Sargazi , Razieh Behzadmehr , Abbas Rahdar , Ana M. Díez-Pascual , Sonia Fathi-karkan","doi":"10.1016/j.onano.2023.100197","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100197","url":null,"abstract":"<div><p>Cancer is amongst the foremost causes of death worldwide, and the field of nanotechnology presents promising prospects in terms of diagnostic and therapeutic approaches. Theranostics are nanoparticles (NPs) that possess the ability to combine therapeutic and diagnostic capabilities into a single agent. Nonetheless, the synthesis, characterization, and delivery of NPs for theranostics against cancer present obstacles. By providing swift, responsive, and economical platforms for cancer detection and treatment, microfluidic systems based on nanomaterials can overcome these obstacles. A synopsis of recent developments in microfluidic-assisted theranostic nanosystems for the treatment of various malignancies is provided in this mini-review. In addition to microfluidic system-based cancer sensing methods (optical, electrochemical, mechanical, and thermal), efficacious treatment approaches (gene therapy, drug delivery, sonodynamic therapy, etc.) are examined. Further, the potential and limitations of this innovative technique are analyzed, and its potential clinical applications in the future are proposed.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100197"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71729349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-10-21DOI: 10.1016/j.onano.2023.100193
Felipe Ocampo Osorio , Esteban Noé Villanueva Badillo , Dariana Geraldine Erazo Rondón , Erika Tatiana Muñoz Arango , Abilo Andrés Velásquez Salazar , Alvaro Andrés Velasquez Torres , Oscar Moscoso Londoño , Elisabeth Restrepo Parra , César Leandro Londoño Calderón
{"title":"Drug loading comparison of commercial ibuprofen on magnetite nanoparticles surface by UV–Vis spectrophotometry and acid-alkali titration by a factorial design of experiments","authors":"Felipe Ocampo Osorio , Esteban Noé Villanueva Badillo , Dariana Geraldine Erazo Rondón , Erika Tatiana Muñoz Arango , Abilo Andrés Velásquez Salazar , Alvaro Andrés Velasquez Torres , Oscar Moscoso Londoño , Elisabeth Restrepo Parra , César Leandro Londoño Calderón","doi":"10.1016/j.onano.2023.100193","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100193","url":null,"abstract":"<div><p>The drug efficacy for the pathologies treatments depends on several physicochemical properties of the drug. Among these, solubility is one of the most important and is directly related to the bioavailability of the drug. Ibuprofen is a popular drug used for the treatment of different diseases. However, its dissolution rate in aqueous media is limited, which causes undesirable adverse effects on the patient. One of the possibilities to solve this challenge is loading ibuprofen on the surface of the nanoparticles for drug delivery. However, some challenges related to complicated experimental procedures, expensive chemical precursors, the techniques for ibuprofen quantification, and the loading efficiency continue to be a problem. This work reports the synthesis of magnetite nanoparticles and the straightforward loading with commercial ibuprofen in a mixed ethanol/water solution without intermediate surfactants, stabilizers, or linkers. XRD, SEM, FT-IR, Magnetometry, UV–Vis Spectrophotometry, and DLS techniques allowed for determining the samples' structure, morphology, functional groups, magnetism, and agglomerate size. A complete factorial Design of Experiments allowed for comparing the encapsulation efficiency for two exposure and centrifugation times (20 and 40 min) by UV–VIS and Acid-alkali titration. The results suggest that the magnetic separation and centrifugation (< 2000 <em>RPM</em>) were inappropriate for nanoparticle decantation. This produces an underestimation of the ibuprofen adsorbed by the nanoparticles. Under our experimental conditions, 20 min is enough to achieve maximum encapsulation efficiency (14<em>%</em>) without surfactants or binders.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100193"},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49739003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-10-13DOI: 10.1016/j.onano.2023.100190
Hnin Ei Thu , Mohamed Haider , Shahzeb Khan , Mohammad Sohail , Zahid Hussain
{"title":"Nanotoxicity induced by nanomaterials: A review of factors affecting nanotoxicity and possible adaptations","authors":"Hnin Ei Thu , Mohamed Haider , Shahzeb Khan , Mohammad Sohail , Zahid Hussain","doi":"10.1016/j.onano.2023.100190","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100190","url":null,"abstract":"<div><p>Owing to their unique characteristic features (e.g., nano-scaled dimensions, surface charge, surface chemistry, thermodynamics, morphology, etc.), diversity of functionalization, and great penetrability to body tissues, nanomaterials have been widely employed in various fields including medical and health sciences. The feasibility and significance of nanomaterials has been well-explored as drug delivery devices, diagnostic tools, vaccination, prognostic agents, and gene therapy; however, substantial evidence on safety of these nanomaterials is lacking. The aim of this study was critical evaluation of available literature on the safety concerns of various nanomaterials and conceptualization of vital factors which might help in mitigating the toxicity caused by these nanomaterials. It has been established that various factors such as particle size, dosage regimen, route of exposure, surface chemistry, degree of aggregation, transmembrane diffusivity, excretion pathway, and immunogenicity play key role in inducing the nanotoxicity. By controlling these factors, interaction of nanomaterials with biological tissues, their penetrability, diffusivity, absorption, distribution, recognition by the immune players, duration of deposition into various body tissues, and clearance from the body can be controlled to avert unintended nanotoxicity. Furthermore, it has been identified that surface functionalization of nanomaterials with diverse moieties such as sodium citrate, polyvinylpyrrolidone (PVP) and/or surfactants could significantly downregulate their nanotoxicity potential and improve their safety profile. Factually, nanotoxicity is a grave concern which should be consider while designing of any nanomaterials to circumvent their detrimental interactions with various biological tissues.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100190"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49719195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phyto-derived metal nanoparticles: Prominent tool for biomedical applications","authors":"P.R. Bhilkar , A.S. Bodhne , S.T. Yerpude , R.S. Madankar , S.R. Somkuwar , A.R. Daddemal-Chaudhary , A.P. Lambat , M. Desimone , Rohit Sharma , R.G. Chaudhary","doi":"10.1016/j.onano.2023.100192","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100192","url":null,"abstract":"<div><p>Nanoparticles (NPs), despite of very small in size have extraordinary power and functional ability, forms the backbone of nanomaterials science, and utilizes it in diverse fields. Many conventional methods can be employed for the fabrication of NPs, but it required either high energy with producing toxic byproducts that degrades an environment. Therefore, a green approach is needed to save an environment. Green methods provide the simple, straightforward, cost-effective and environmentally-safe approach for the NPs synthesis. Plant derived NPs, is one of the best and supreme methods with green and sustainable routes for preparation of NPs. As plant derived metal NPs gains the more attention due to their green synthesis approach and significant for biomedical appliances. In the present review, we concentrated on synthesis of plant derived metal NPs (Ag, Au, Cu, Ni, Zn and Ti) with their morphologies and biomedical applications. Also discussed the therapeutic applications and future perspective of plant derived metal NPs.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100192"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49719191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication and evaluation of poly(ε-caprolactone) based nanofibrous scaffolds loaded with homoeopathic mother tincture of Syzygium cumini for wound healing applications","authors":"Deiviga Murugan , Ankitha Suresh , Goutam Thakur , Bhisham Narayan Singh","doi":"10.1016/j.onano.2023.100189","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100189","url":null,"abstract":"<div><p>Traditional wound healing substitutes loaded with bioactive molecules such as drugs, growth factors, and so on have been extensively researched in order to promote better wound healing and restore normal tissue function. The use of nanofibrous scaffolds has enhanced the biomaterial performance, thereby offering a promising solution as wound dressings in the field of skin tissue engineering. In the present study, the homoeopathic mother tincture extract of <em>Syzygium cumini</em> incorporated in poly(ε-caprolactone) nanofibrous scaffolds were fabricated in the concentration range of 5 %–20 % (w/w) and its various physicochemical and biological properties were evaluated. The fabricated nanofibers structurally mimicked the extracellular matrix, with enhanced hydrophilicity for better cellular attachment and proliferation. These scaffolds also showed anti-biofilm activity against <em>P. aeruginosa</em> and <em>S. aureus</em> and exhibited superior anti-oxidant activity. Furthermore, the extract incorporation was observed to be beneficial in cell adhesion, viability, growth and proliferation. This novel poly(ε-caprolactone) nanofibrous scaffold loaded with homoeopathic mother tincture extract of <em>Syzygium cumini</em> might be a suitable biomaterial for clinical management of wounds and reconstruction of damaged/diseased skin tissues.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100189"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49735457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-10-09DOI: 10.1016/j.onano.2023.100191
Chwadaka Pohshna, Damodhara Rao Mailapalli
{"title":"Modeling the particle size of nanomaterials synthesized in a planetary ball mill","authors":"Chwadaka Pohshna, Damodhara Rao Mailapalli","doi":"10.1016/j.onano.2023.100191","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100191","url":null,"abstract":"<div><p>Planetary ball milling (PBM) synthesis of nanoparticles involves conducting several trials to obtain the desired size. Mathematical modeling of the PBM process is a tool to tackle the issue of PBM synthesis. In this study, a conceptual model was proposed by integrating the kinematics of the PBM process along with the breakage mechanism of a material to determine particle size at different milling parameters and hence be able to select appropriate milling parameters for PBM synthesis. The conceptual model was tested for hydroxyapatite, zeolite and fly ash material. The conceptual model successfully simulated the size-reduction mechanism in PBM and predicted the particle size of the tested material with good accuracy. The most sensitive milling parameters were found to be the milling speed followed by the vial volume, milling time, and ball to powder ratio. The material properties input parameters were observed to be less sensitive than the milling parameters. The PBM model may be used as a prediction tool for determining the appropriate milling parameters needed in synthesizing any nanomaterial by knowing the material properties.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100191"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49719511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-09-12DOI: 10.1016/j.onano.2023.100187
Osama M. Darwesh , Marwa A. Shalaby , Mohamed M. Gharieb , Ibrahim A. Matter
{"title":"Application of the novel Cu-resistant fungus Aspergillus niger A3 in bioremoval of Cu-NPs from its aqueous solutions","authors":"Osama M. Darwesh , Marwa A. Shalaby , Mohamed M. Gharieb , Ibrahim A. Matter","doi":"10.1016/j.onano.2023.100187","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100187","url":null,"abstract":"<div><p>Copper is an essential element for the metabolism of plants and animals, and has wide applications in the agricultural and industrial sectors. On the other hand, copper nanoparticles (Cu-NPs) have become widely used for research and application, which increases the chances of its spread and potential environmental exposure to this element. Therefore, in this study, the bioremediation bioreactor for the removing of Cu-NPs based on a fungal strain (<em>Aspergillus niger</em>) was introduced. <em>A. niger</em> isolate MR3 with accession No. OP861660.1 after molecular identification was selected as a promising isolate for copper resistance and Cu-NPs bioremoval. The impact of biomass age, pH, and contact time was investigated in order to establish the ideal biosorption conditions. The results showed a high Cu-NPs removal via two-days-old <em>A. niger</em> biomass, where the bioremoval percentage reached 66.8 % at pH value 7 after a contact time of 10 min. Dead biomass of <em>A. niger</em> achieved the highest Cu-NPs removal rate, eliminating 68.2 % compared with both living and alginate beads-immobilized biomass. Thus, bioremoval experiments using dead biomass were performed in a bioreactor for sequential removal of Cu-NPs. The bioremoval capacity reached 97 % under optimized conditions from synthetic wastewater after a contacting time of 10 min. Thus, the present work considered the first report for bioremediation of Cu-NPs into bioreactor.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100187"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49719580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}