{"title":"Green extraction and isolation of cellulose nanofibrils from orchid (Dendrobium sonia earsakul) stem for wound dressing application","authors":"Naphat Usawattanakul , Nutapat Chaisirijaroenpun , Prakit Sukyai , Udomlak Sukatta , Nisit Watthanasakphuban , Thidarat Nimchua , Phakkhananan Pakawanit , Nuntaporn Kamonsutthipaijit , Selorm Torgbo","doi":"10.1016/j.onano.2024.100229","DOIUrl":"10.1016/j.onano.2024.100229","url":null,"abstract":"<div><div>This study explored agricultural waste orchid <em>(Dendrobium sonia earsakul</em>) stem as a sustainable material to extract nanocellulose with its extract for wound dressing applications. Cellulose isolation was performed using a green method involving synergistic pretreatment with xylanase and laccase enzymes. This was followed by isolation of cellulose nanofibers (CNF) using mechanical process. The green pretreatment demonstrated high efficiency in delignification, reduced chemical usage, and increased whiteness index to 90.84 %. The fiber showed a high crystallinity index of 72.85 %, which was confirmed by wide-angle X-ray scattering (WAXS) analysis. Transmission electron microscopy (TEM) revealed CNF with an average diameter of 10.51 ± 2.41 nm. The crude extract showed anti-inflammatory effect and antimicrobial activities against <em>S. aureus</em> and <em>E. coli</em> with minimum bactericide concentration (MBC) of 51.6 mg/mL. The cytotoxicity of the extract was evaluated using MC3T3-E1 cell line. A novel multi-layered wound dressing was developed using the CNF and the extract. The chemical composition of the membrane was confirmed by Fourier transform infrared spectroscopy. The 3D structure of the membrane was established using Synchrotron radiation X-ray tomographic microscopy. The membrane is biodegradable, non-toxic against MC3T3-E1 cells and biocompatible with 78.52 % cell viability. These findings suggest the possibility of extracting valuable chemicals from agricultural wastes such as orchid stem using green pretreatment to create an eco-friendly wound dressing.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"22 ","pages":"Article 100229"},"PeriodicalIF":0.0,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Medical nanoscale materials for virus-induced cervical cancer therapeutic modalities: For targeting delivery","authors":"Adane Adugna , Mamaru Getinet , Gashaw Azanaw Amare , Mohammed Jemal","doi":"10.1016/j.onano.2024.100221","DOIUrl":"10.1016/j.onano.2024.100221","url":null,"abstract":"<div><h3>Background</h3><div>Human papillomavirus subtypes 16 and 18-associated cervical cancer is a major global health problem that affects women.</div></div><div><h3>Main body</h3><div>Conventional treatment approaches, including chemotherapy, immunotherapy, and gene therapy, are typically vulnerable to systemic harm, cytotoxicity, non-specificity, lack of bioavailability, poor efficacy, poor pharmacokinetics, vaginal mucosal impermeability, slow therapeutic delivery, and adverse reactions. Moreover, conventional therapeutic approaches have problems associated with biocompatibility, stability, dispersion, and the delivery of therapeutic genes into target cells. They also produce modest amounts of long-lasting antitumor immunity and have difficulty successfully targeting and eliminating cancer cells. For this reason, nanoparticles, including polymers like poly-amidoamine and polylactide-co-glycolide dendrimers, aptamers, micelles, lipid-based nanocarriers like liposomes and pegylated lipoplexes, macromolecules, and metallic nanoparticles, including silica, copper oxide, zinc oxide, iron oxide, gold, and silver, are of paramount importance to overcome the numerous drawbacks of carrying and transporting diverse types of HPV-16 and 18-caused cervical cancer therapeutic agents. This review summarizes the application of nanoscale materials to deliver various therapeutic agents to cervical cancer cells.</div></div><div><h3>Conclusions</h3><div>The use of nanoparticles as medical nanoscale materials during the treatment of cervical cancer helps to improve the efficacy of various therapeutic modalities, speed up the delivery process, and decrease toxicity from drugs.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"21 ","pages":"Article 100221"},"PeriodicalIF":0.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biosynthesis, characterization, and in-vitro anticancer effect of plant-mediated silver nanoparticles using Acalypha indica Linn: In-silico approach","authors":"Luailik Madaniyah , Saidun Fiddaroini , Elok Kamilah Hayati , Moh. Farid Rahman , Akhmad Sabarudin","doi":"10.1016/j.onano.2024.100220","DOIUrl":"10.1016/j.onano.2024.100220","url":null,"abstract":"<div><div>Cancer is a significant global health issue, with rising prevalence and mortality rates demanding urgent attention. The World Health Organization emphasizes the need for effective prevention, early detection, and treatment strategies to address this public health challenge. Current treatment modalities, including surgery, hormonal therapy, immunotherapy, radiation therapy, and chemotherapy, are often associated with considerable side effects and high costs. This study investigates the biosynthesis of silver nanoparticles using <em>Acalypha indica L.</em> (AgNPs), a medicinal plant recognized for its therapeutic benefits, as a potential cancer treatment with minimal side effects and a lower risk of drug resistance. AgNPs exhibit anti-inflammatory properties and the ability to inhibit angiogenesis while counteracting drug resistance mechanisms. Moreover, the use of chitosan as a coating on AgNPs (AgNPs-Chit) enhances their stability and specificity toward cancer cells, thereby improving their anticancer efficacy. Characterization of the synthesized AgNPs was conducted using various techniques, including UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), particle size analysis (PSA), and transmission electron microscopy (TEM), confirming the successful synthesis, stability, and spherical morphology of the nanoparticles, with an average diameter of 7 nm and a zeta potential of −24.51 mV. In vitro cytotoxicity testing showed that AgNPs-Chit exhibited stronger anticancer activity against T47D cells with an IC<sub>50</sub> value of 173 µg/mL, compared to AgNPs (IC<sub>50</sub> 244 µg/mL) and the Acalypha indica L extract (IC<sub>50</sub> 826 µg/mL). When compared to the control, treatments with AgNPs-Chit, AgNPs, and the plant extract demonstrated statistically significant differences (∗<em>p</em> < 0.05, ∗∗<em>p</em> < 0.01). These results indicate that the modification of AgNPs with chitosan (AgNPs-Chit) significantly enhances anticancer efficacy compared to both AgNPs and <em>Acalypha indica L</em>. extract. The modification with AgNPs increased anticancer efficiency by 338%, while AgNPs-Chit showed a 446% increase compared to the original extract, highlighting the enhanced potential of these nanoparticles in inhibiting cancer cell growth. Additionally, molecular docking studies of eight key compounds identified through LC-MS analysis (quercetin, kaempferol, catechin, indoline, 4-aminobenzoic acid, 1-(2-quinolinyl)piperazine, 3-indoleacrylic acid, and pyridine-3-carboxamide) revealed strong binding affinities to the cancer target protein 3PP0, with binding energies ranging from −9.4 to −5.9 kcal/mol, compared to doxorubicin's binding energy of −9.0 kcal/mol.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"21 ","pages":"Article 100220"},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A recent advances in antimicrobial activity of green synthesized selenium nanoparticle","authors":"Durgadevi Ravi , Bhuvaneshwari Gunasekar , Vishwanathan Kaliyaperumal , Shyamaladevi Babu","doi":"10.1016/j.onano.2024.100219","DOIUrl":"10.1016/j.onano.2024.100219","url":null,"abstract":"<div><div>Green technologies have gained prominence, particularly in the environmentally friendly synthesis of compounds, with Selenium nanoparticles (SeNPs) emerging as a key area of interest due to their potential in drug development. The sustainable production of SeNPs using microorganisms and plants enhances their physical, chemical, and biological properties, improving their catalytic efficiency. Recent advancements in nanotechnology, especially in medicine and antimicrobial research, highlight the growing significance of green synthesis methods. These eco-conscious approaches aim to preserve natural resources while promoting sustainable nanoparticle production techniques. This review focuses on SeNPs' antimicrobial action as well as the factors that influence their green production, such as pH, temperature, and precursor concentration, all of which affect their morphology, size, and stability. SeNPs' antimicrobial activity against a diverse range of bacteria, fungi, and viruses is extensively tested, with a focus on their capacity to battle drug-resistant infections and biofilms. The mechanisms of SeNPs' antimicrobial effect are investigated, including membrane disruption, reactive oxygen species (ROS) production, and interactions with cellular components. Furthermore, their antiviral characteristics and ability to alter immune responses highlight their medicinal applications. SeNPs represent a significant advancement in green nanotechnology, offering sustainable solutions to pressing biomedical challenges, particularly in the fight against drug-resistant pathogens.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"20 ","pages":"Article 100219"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2024-11-01DOI: 10.1016/j.onano.2024.100215
Mohammed Mehadi Hassan Chowdhury , Khadizatul Kubra , Ashekul Islam
{"title":"Fundamentals behind the success of nanotechnology in cancer treatment and diagnosis","authors":"Mohammed Mehadi Hassan Chowdhury , Khadizatul Kubra , Ashekul Islam","doi":"10.1016/j.onano.2024.100215","DOIUrl":"10.1016/j.onano.2024.100215","url":null,"abstract":"<div><div>Nanotechnology is considered one of the most advanced cancer treatment and diagnostic technologies. Due to the numerous benefits of the application of nanoparticles in cancer management, nanotechnology has proven its therapeutic and diagnostic efficiency as an alternative but promising approach against cancer. However, several limitations and challenges continue to pose obstacles to its success. Designing highly precise NPs considering physicochemical factors may lead to successful outcomes in cancer therapy. Besides, the behaviour of NPs with biomolecules in a biological system can be another potential phenomenon of NPs in biomedical applications. Here, we examined the basic aspects, obstacles, and challenges of cancer nanomedicine based on the factors associated with successful clinical outcomes in cancer management to understand this research area comprehensively.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"20 ","pages":"Article 100215"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2024-11-01DOI: 10.1016/j.onano.2024.100218
Yuliet Montoya , Wilson Agudelo , Alejandra Garcia-Garcia , John Bustamante
{"title":"Cellular viability in an in vitro model of human ventricular cardiomyocytes (RL-14) exposed to gold nanoparticles biosynthesized using silk fibroin from silk fibrous waste","authors":"Yuliet Montoya , Wilson Agudelo , Alejandra Garcia-Garcia , John Bustamante","doi":"10.1016/j.onano.2024.100218","DOIUrl":"10.1016/j.onano.2024.100218","url":null,"abstract":"<div><div>In nanotechnology, tissue engineering proposes obtaining nanomaterials of natural or synthetic origin, looking to incorporate components that exhibit a defined shape, diameter, colloidal stability, and biological identity to promote and regulate the events that occur in a cardiac cell microenvironment. This research aimed to evaluate cellular viability in an in vitro model of human fetal ventricular cardiomyocytes on interaction with gold nanoparticles biosynthesized using silk fibroin from silk fibrous waste. The Physicochemical properties were characterized by UV–visible spectroscopy, Fourier-transform infrared spectroscopy, electrokinetic potential, and scanning transmission electron microscopy. Moreover, the MTT assay was used to determine the cell viability of cardiomyocytes exposed to gold nanoparticles. The results showed that the variation of the pH of the reaction allows the synthesis of different geometries of nanoparticles with diameters between 6 and 334 nm. Furthermore, it was found that the nanoparticles with a tendency to sphericity favor the cell viability of cardiomyocytes.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"20 ","pages":"Article 100218"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2024-11-01DOI: 10.1016/j.onano.2024.100216
Gerardo Garcia-Zavaleta , Daniel Mejia-Valdez , Hamed Hosseinian , Ciro A. Rodriguez , Geoffrey A. Cordell , Yadira I. Vega-Cantu , Aida Rodriguez-Garcia
{"title":"Fabrication of pyrroloquinoline quinone-loaded small unilamellar vesicles through various downsizing techniques for biomedical applications","authors":"Gerardo Garcia-Zavaleta , Daniel Mejia-Valdez , Hamed Hosseinian , Ciro A. Rodriguez , Geoffrey A. Cordell , Yadira I. Vega-Cantu , Aida Rodriguez-Garcia","doi":"10.1016/j.onano.2024.100216","DOIUrl":"10.1016/j.onano.2024.100216","url":null,"abstract":"<div><div>Treatment of injuries to bone structure represents a significant economic burden for health care institutions and systems worldwide. The development of tissue engineering scaffolds has expanded to include the incorporation of nanotechnology platforms such as liposomes for the efficient delivery of chemotherapeutic agents. Pyrroloquinoline quinone (PQQ) is a naturally occurring quinone with antioxidant and tissue regenerative properties. In this study, the liposome-based encapsulation of PQQ was achieved by studying the effect of different downsizing methods and lipid compositions. Liposomal sonication produced stable vesicles of sizes <200 nm. The incorporation of PQQ into the liposomes and its interactions with the lipids enhanced their stability for up to four weeks and allowed sustained release for seven weeks. The results demonstrate the ability of these systems to encapsulate PQQ with high stability, efficient entrapment, and extended release profiles for their potential use in biomedicine as a delivery system for bone tissue engineering.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"20 ","pages":"Article 100216"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of coating chitosan from cuttlefish bone (Sepia Sp.) on the surface of orthodontic mini-screw","authors":"Karima Qurnia Mansjur, Nurnabilla Syfadewi Attaya, Eka Erwansyah, Ardiansyah S Pawinru, Mansjur Nasir","doi":"10.1016/j.onano.2024.100217","DOIUrl":"10.1016/j.onano.2024.100217","url":null,"abstract":"<div><h3>Introduction</h3><div>Peri-implantitis is a significant complication resulting from the failure of orthodontic mini-screws. Recent strategies to address this issue include the application of natural antibacterial coatings to prevent bacterial colonization. Notably, cuttlefish (<em>Sepia</em> sp.) bones are rich in chitosan, which is recognized for its antibacterial effectiveness and biocompatibility.</div></div><div><h3>Objectives</h3><div>To evaluate the effects of a chitosan coating derived from cuttlefish bone (<em>Sepia</em> sp<em>.</em>) on mini-screws against <em>Aggregatibacter actinomycetemcomitans</em> bacteria frequently linked to peri‑implantitis.</div></div><div><h3>Materials and Methods</h3><div>The surface functional groups, phase composition, and crystal morphology of chitosan were analyzed using conventional analytic techniques alongside energy-dispersive X-ray analysis. These prepared were tested for antibacterial activity against <em>A. actinomycetemcomitans</em> by disk diffusion assay; minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) were determined. Stainless steel mini-screws were coated with chitosan, and their surfaces were characterized using scanning electron microscopy (SEM).</div></div><div><h3>Results</h3><div>The investigation revealed that chitosan exhibited a MIC value of 8 ppm against <em>A. actinomycetemcomitans</em> with MBCs recorded at 16 ppm. Zones of inhibition varied based on concentration; notably, concentrations at 0.4 %, 0.6 %, and 0.8 % produced zones averaging 16.17 ± 1.64 mm collectively while increasing to a mean zone size of 20.99 ± 3.63 mm at the highest tested concentration (0.8 %). SEM analyses further confirmed the successful adhesion of the chitosan compound onto immersed mini-screw surfaces.</div></div><div><h3>Conclusion</h3><div>The prepared chitosan from cuttlefish bone <em>(Sepia</em> sp.<em>)</em> has antibacterial activity against the bacteria <em>A. actinomycetemcomitans</em> in vitro and can successfully coat SS mini-screws to enhance their efficiency.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"20 ","pages":"Article 100217"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2024-08-30DOI: 10.1016/j.onano.2024.100214
Sima Singh , Ada Raucci , Wanda Cimmino , Antonella Miglione , Panagiota M Kalligosfyri , Stefano Cinti
{"title":"Transformative approaches for siRNA detection","authors":"Sima Singh , Ada Raucci , Wanda Cimmino , Antonella Miglione , Panagiota M Kalligosfyri , Stefano Cinti","doi":"10.1016/j.onano.2024.100214","DOIUrl":"10.1016/j.onano.2024.100214","url":null,"abstract":"<div><p>Small interfering RNA (siRNA) is essential for the process of gene silencing, especially for cancer. Despite its considerable promise, siRNA faces challenges due to stability issues of formulation and undesirable off-target side effects. In order to address these difficulties, it is essential to carefully monitor the levels of siRNA. The existing point-of-care (POC) systems cannot precisely and efficiently detect or monitor siRNA levels. In light of these challenges, this review gives the prospects of siRNA detection by proposing a novel hypothesis of existing electrical and optical-based detection of DNA/RNA with the POC platform. This hypothesis offers an interesting novel perspective to potentially fill the existing gaps, in detecting siRNA. By utilising these technologies, there is high potential to develop a proof-of-concept system that will not only overcome the existing challenges, but it will also allow effective and precise monitoring of siRNA, in real-world healthcare environments. In summary, the prospects for siRNA in the realm of POC platforms are quite encouraging, since it allows precise and effective monitoring.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"20 ","pages":"Article 100214"},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235295202400015X/pdfft?md5=7f981fcf2ad57330a54f3dc8e587b780&pid=1-s2.0-S235295202400015X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2024-08-22DOI: 10.1016/j.onano.2024.100213
Anas Yahya Ali , Abd-Alrahman Khalid Alani , Barakat O. Ahmed , Layth L. Hamid
{"title":"Effect of biosynthesized silver nanoparticle size on antibacterial and anti-biofilm activity against pathogenic multi-drug resistant bacteria","authors":"Anas Yahya Ali , Abd-Alrahman Khalid Alani , Barakat O. Ahmed , Layth L. Hamid","doi":"10.1016/j.onano.2024.100213","DOIUrl":"10.1016/j.onano.2024.100213","url":null,"abstract":"<div><p>Ag NPs have garnered significant attention in the field of biomedical applications due to their antibacterial, antifungal, antiviral, anti-inflammatory, and antiangiogenic effects. The present study aimed to establish a simple, reliable, cost-effective, and environmentally friendly approach for the synthesis of Ag NPs in different sizes using extracts from <em>Syzygium aromaticum</em> and <em>Laurus nobilis</em> and study the relationship between the size of Ag NPs and their antibacterial and anti-biofilm effectiveness. The synthesized Ag NPs were extensively characterized using various techniques, such as XRD, SEM, UV–vis and FTIR. Importantly, the study evaluated the antibacterial and anti-biofilm activities of Ag NPs in two different size (12 nm and 45 nm) against MDR and biofilm-producing pathogenic bacteria, including <em>Kocuria rosea, Staphylococcus sciuri</em>, and <em>Staphylococcus lentus</em>. The antibacterial activity of the larger Ag NPs-SA (45 nm) ranging between 14–25 mm while for the smaller Ag NPs-LN (12 nm) ranging between 26–48 mm against pathogenic bacteria. The MIC values for Ag NPs-LN were between 16 - 32 µg/ml while for Ag NPs-SA were 64 µg/ml. The MIC value of the Ag NPs decreased as their size decreased, indicating higher potency against the tested bacterial strains. Furthermore, the smaller Ag NPs-LN exhibited a higher rate of biofilm inhibition that reach 88% compared to the larger Ag NPs that reach 70%. This study provides novel evidence that the enhanced antibacterial and anti-biofilm activities of Ag NPs are directly correlated with their decreased nanoscale size. These findings highlight the potential of Ag NPs as a promising adjuvant in the management of bacterial infections, particularly those involving MDR and biofilm-producing pathogens, which pose a significant challenge in clinical settings.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"20 ","pages":"Article 100213"},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952024000148/pdfft?md5=21eddb2fd7a1aacb043580cc2e4a6bc8&pid=1-s2.0-S2352952024000148-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}