Chitosan-Coated silver nanoparticles with various floral honey bioreductors: A promising nonalcoholic hand gel sanitizer formulation

Q2 Pharmacology, Toxicology and Pharmaceutics
Saidun Fiddaroini , Kurnia Indu , Luailik Madaniyah , Suci Amalia , Aulanni'am , Moh. Farid Rahman , Akhmad Sabarudin
{"title":"Chitosan-Coated silver nanoparticles with various floral honey bioreductors: A promising nonalcoholic hand gel sanitizer formulation","authors":"Saidun Fiddaroini ,&nbsp;Kurnia Indu ,&nbsp;Luailik Madaniyah ,&nbsp;Suci Amalia ,&nbsp;Aulanni'am ,&nbsp;Moh. Farid Rahman ,&nbsp;Akhmad Sabarudin","doi":"10.1016/j.onano.2024.100228","DOIUrl":null,"url":null,"abstract":"<div><div>Antimicrobial resistance represents a critical global health challenge, necessitating innovative strategies to combat resistant pathogens. In this study, silver nanoparticles (AgNPs) were synthesized using honey as a bioreductant and coated with oligochitosan derived from the depolymerization of low-molecular-weight chitosan. The synthesis employed eco-friendly methods, with characterization performed via UV–Vis spectroscopy, FTIR, TEM, EDX, XRD, and LC<img>HRMS. AgNPs synthesized with <em>Ceiba pentandra</em> honey exhibited an average particle size of 11.71 nm, demonstrating high antibacterial activity when coated with oligochitosan. The 10 % AgNPs-Chitosan-based hand gel sanitizer formulation achieved inhibition zones of 14.84 ± 0.40 mm against <em>Staphylococcus aureus</em> and 11.16 ± 0.73 mm against <em>Pseudomonas aeruginosa.</em> The hand gel sanitizer formulation exhibited stable pH (4.0–4.3), high resistance to syneresis at 5 °C and 40 °C, and superior antibacterial efficacy compared to alcohol-based hand gel sanitizers. Dermatological assessments confirmed the formulation's safety, and <em>Artemia salina</em> toxicity tests revealed the highest LC<sub>50</sub> value (2,648.97 ppm) for AgNPs derived from <em>C. pentandra</em> honey. This work provides an eco-friendly, efficient method for AgNP synthesis with strong potential for biomedical and environmental applications, including their use in hand gel sanitizers to reduce pathogen transmission in various settings, contributing to the advancement of green nanotechnology.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"21 ","pages":"Article 100228"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235295202400029X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial resistance represents a critical global health challenge, necessitating innovative strategies to combat resistant pathogens. In this study, silver nanoparticles (AgNPs) were synthesized using honey as a bioreductant and coated with oligochitosan derived from the depolymerization of low-molecular-weight chitosan. The synthesis employed eco-friendly methods, with characterization performed via UV–Vis spectroscopy, FTIR, TEM, EDX, XRD, and LCHRMS. AgNPs synthesized with Ceiba pentandra honey exhibited an average particle size of 11.71 nm, demonstrating high antibacterial activity when coated with oligochitosan. The 10 % AgNPs-Chitosan-based hand gel sanitizer formulation achieved inhibition zones of 14.84 ± 0.40 mm against Staphylococcus aureus and 11.16 ± 0.73 mm against Pseudomonas aeruginosa. The hand gel sanitizer formulation exhibited stable pH (4.0–4.3), high resistance to syneresis at 5 °C and 40 °C, and superior antibacterial efficacy compared to alcohol-based hand gel sanitizers. Dermatological assessments confirmed the formulation's safety, and Artemia salina toxicity tests revealed the highest LC50 value (2,648.97 ppm) for AgNPs derived from C. pentandra honey. This work provides an eco-friendly, efficient method for AgNP synthesis with strong potential for biomedical and environmental applications, including their use in hand gel sanitizers to reduce pathogen transmission in various settings, contributing to the advancement of green nanotechnology.

Abstract Image

壳聚糖包覆银纳米颗粒与各种花蜂蜜生物载体:一种有前途的无酒精洗手液配方
抗微生物药物耐药性是一项重大的全球卫生挑战,需要采取创新战略来对抗耐药病原体。本研究以蜂蜜为生物还原剂,包被低分子量壳聚糖制备的银纳米粒子(AgNPs)。通过紫外可见光谱、FTIR、TEM、EDX、XRD和LCHRMS进行表征,采用环保的方法合成。以五角草蜂蜜为原料合成的AgNPs平均粒径为11.71 nm,包被低聚壳聚糖后具有较高的抗菌活性。10% agnps -壳聚糖基洗手液配方对金黄色葡萄球菌的抑制面积为14.84±0.40 mm,对铜绿假单胞菌的抑制面积为11.16±0.73 mm。与醇基洗手液相比,该洗手液配方pH稳定(4.0-4.3),在5°C和40°C条件下耐协同作用,抗菌效果优于醇基洗手液。皮肤病学评估证实了该配方的安全性,而盐蒿毒性测试显示,从五味子蜂蜜中提取的AgNPs的LC50值最高(2,648.97 ppm)。这项工作提供了一种生态友好、高效的AgNP合成方法,具有强大的生物医学和环境应用潜力,包括将其用于洗手液中,以减少各种环境下的病原体传播,为绿色纳米技术的进步做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
OpenNano
OpenNano Medicine-Pharmacology (medical)
CiteScore
4.10
自引率
0.00%
发文量
63
审稿时长
50 days
期刊介绍: OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信