IET Nanodielectrics最新文献

筛选
英文 中文
Investigation of water droplet-initiated discharges on laser textured silicone nano-micro composites using UHF and fluorescent fibre techniques 利用超高频和荧光纤维技术研究激光织构硅纳米微复合材料的水滴引发放电
IF 2.7
IET Nanodielectrics Pub Date : 2021-03-29 DOI: 10.1049/nde2.12016
Somasundaram Karthikeyan Amizhtan, Parvathy Ganesh, Balaji Srinivasan, Nilesh J. Vasa, Sivanandam Aravindan, Ramanujam Sarathi
{"title":"Investigation of water droplet-initiated discharges on laser textured silicone nano-micro composites using UHF and fluorescent fibre techniques","authors":"Somasundaram Karthikeyan Amizhtan,&nbsp;Parvathy Ganesh,&nbsp;Balaji Srinivasan,&nbsp;Nilesh J. Vasa,&nbsp;Sivanandam Aravindan,&nbsp;Ramanujam Sarathi","doi":"10.1049/nde2.12016","DOIUrl":"10.1049/nde2.12016","url":null,"abstract":"<p>Laser texturing has been carried out on the surface of the silicone nano-micro composites to achieve super hydrophobic properties, and water droplet-initiated Corona discharge studies were carried out. The Corona inception voltage (CIV) exhibits considerable enhancement with increase in the nano filler content under DC voltage compared with AC voltage. The corona inception voltage is high with the textured surface and is found to have direct correlation with contact angle of the composite specimen. The Corona inception voltage was measured using Ultra-high frequency (UHF) and fluorescent fibre techniques. It is observed that the fluorescent fibre technique is more sensitive in identifying discharges. Frequency domain analysis of UHF signal shows a dominant frequency at 1 GHz and for fluorescent signal, the spectral content is in the range of DC to 10 MHz. The rise time and pulse width of the UHF signal increases with the increase in the nano filler in composite material. The energy content of UHF/fluorescent signal due to discharges shows similar trend with its increase in energy with variation in its magnitude of the signal formed. The pulse width of fluorescent signal formed due to water droplet-initiated discharges under AC and DC voltage is almost the same, and with the textured specimen it is quite low than the non-textured material.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"4 4","pages":"201-209"},"PeriodicalIF":2.7,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45562851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-dielectrics in biosystems 生物系统中的纳米电介质
IF 2.7
IET Nanodielectrics Pub Date : 2021-03-25 DOI: 10.1049/nde2.12014
Jingjing Xu, Fan Wang, Yihan Song, Song Ge, Shengyong Xu
{"title":"Nano-dielectrics in biosystems","authors":"Jingjing Xu,&nbsp;Fan Wang,&nbsp;Yihan Song,&nbsp;Song Ge,&nbsp;Shengyong Xu","doi":"10.1049/nde2.12014","DOIUrl":"10.1049/nde2.12014","url":null,"abstract":"<p>Here, the nano-sized dielectrics in biosystems and their functions are reviewed. For a variety of electromagnetic phenomena observed in biosystems, from a generation of weak electrical pulses in all kinds of neural systems to generation of high-power electrical pulses for sensing and attacking preys in electric eels, nano-dielectrics, such as lipid membrane, always play an important role. The electromagnetic pulses in neural systems are created by transmembrane ionic fluxes through a cluster of ion channels embedded in a lipid membrane, but the high-power pulses released by electric eels are simultaneously generated by billions of ion channels. An overlooked function of the nano-dielectrics is that they build up a network serving as the major transmitting paths for electromagnetic pulses in dendrites and axons, and even in ordinary cell membranes. Many fundamental questions in the working mechanisms of nano-dielectrics in nature biosystems remain open and answers to these questions may lead to novel, high-efficiency manmade power supplies and a better understanding of brain functions.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"4 4","pages":"179-192"},"PeriodicalIF":2.7,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47271867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved ionic solid/viologen hybrid electrochromic device using pre-bleached Prussian-blue electrode 用预漂白普鲁士蓝电极改进离子固体/紫外光杂化电致变色装置
IF 2.7
IET Nanodielectrics Pub Date : 2021-03-25 DOI: 10.1049/nde2.12015
Anjali Chaudhary, Devesh K. Pathak, Manushree Tanwar, Suchita Kandpal, Tanushree Ghosh, Chanchal Rani, Rajesh Kumar
{"title":"Improved ionic solid/viologen hybrid electrochromic device using pre-bleached Prussian-blue electrode","authors":"Anjali Chaudhary,&nbsp;Devesh K. Pathak,&nbsp;Manushree Tanwar,&nbsp;Suchita Kandpal,&nbsp;Tanushree Ghosh,&nbsp;Chanchal Rani,&nbsp;Rajesh Kumar","doi":"10.1049/nde2.12015","DOIUrl":"10.1049/nde2.12015","url":null,"abstract":"<p>The authors demonstrate how a simple step of loading an electrochromically active Prussian blue (PB; an ionic solid) electrode with Li<sup>+</sup> ions can help in achieving a more efficient viologen based solid state hybrid electrochromic device. To accomplish this, two different devices, with and without Li<sup>+</sup> ion loaded PB electrodes, have been fabricated. These devices have been compared in terms of their current-voltage response, bias dependent optical modulation and corresponding colour switching to establish the role of Li<sup>+</sup> ion in charge transport and charge balancing involved during bias induced redox mediated colour switching of the two devices. The Li<sup>+</sup> containing PB electrode device exhibits a superior performance with twice (40%) the value of colour contrast (20%), quick response switching (1.3 s), excellent stability (8400 s) and better power efficiency as compared to the device containing as-synthesised PB electrode. A mechanism has been proposed to explain the role of the Li<sup>+</sup> ion which is later substantiated using bias-dependent in situ Raman spectroscopic evidences.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"4 4","pages":"193-200"},"PeriodicalIF":2.7,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45471288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
High energy efficiency nanodielectrics with relaxor ferroelectric polymer and antiferroelectric (Pb0.97La0.02) (Zr0.63Sn0.3Ti0.07)O3 ceramics 具有弛豫铁电聚合物和反铁电(Pb0.97La0.02) (Zr0.63Sn0.3Ti0.07)O3陶瓷的高能效纳米介电材料
IF 2.7
IET Nanodielectrics Pub Date : 2021-03-24 DOI: 10.1049/nde2.12013
Jian Wang, Yunchuan Xie, Chao Chen, Biyun Peng, Ben Zhang, Zhicheng Zhang
{"title":"High energy efficiency nanodielectrics with relaxor ferroelectric polymer and antiferroelectric (Pb0.97La0.02) (Zr0.63Sn0.3Ti0.07)O3 ceramics","authors":"Jian Wang,&nbsp;Yunchuan Xie,&nbsp;Chao Chen,&nbsp;Biyun Peng,&nbsp;Ben Zhang,&nbsp;Zhicheng Zhang","doi":"10.1049/nde2.12013","DOIUrl":"10.1049/nde2.12013","url":null,"abstract":"<p>Dielectric materials with high-energy-density and low-energy-loss have received lot of attention in terms of renewable energy storage and application. PVDF-based polymer/ceramics composite dielectrics are considered as one of the most promising materials due to their high dielectric constant. However, the high remnant polarisation (<i>P</i><sub><i>r</i></sub>) of ferroelectric polymer matrix and ceramics fillers generates a lot of energy loss and residual heat during charge-discharge cycles, which limits their practical applications. Compared with ferroelectrics, relaxor ferroelectric and antiferroelectric dielectrics may have high energy efficiency due to their lower <i>P</i><sub><i>r</i></sub>. Here, the relaxor ferroelectric matrix and antiferroelectric filler coated by the polydopamine layer were prepared by chemical grafting and solid-state method, respectively. Afterwards, the P(VDF-TrFE-CTFE)-g-PMMA/PLZST nanocomposite was prepared via solution casting. Experimental results show that the energy loss of the optimised nanocomposites was significantly reduced, leading to an enhanced charge-discharge efficiency (<i>η</i>) of 78% at 450 MV/m, which is 267% of the pure P(VDF-TrFE-CTFE) matrix and superior to those of most polymer/ferroelectric filler nanocomposites. It is encouraging that the breakdown strength and energy storage density of the P(VDF-TrFE-CTFE)-g-PMMA/PLZST nanocomposites with 6 wt% filler fractions reach the values of 458 MV/m and 10.3 J/cm<sup>3</sup>. This study establishes a simple and effective strategy for preparing capacitors with high energy efficiency.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"4 4","pages":"171-178"},"PeriodicalIF":2.7,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"110228691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Low voltage colour modulation in hydrothermally grown Ni-Co nanoneedles for electrochromic application 电致变色用水热生长镍钴纳米针的低压颜色调制
IF 2.7
IET Nanodielectrics Pub Date : 2021-03-18 DOI: 10.1049/nde2.12012
Devesh K. Pathak, Anjali Chaudhary, Manushree Tanwar, Suchita Kandpal, Tanushree Ghosh, Chanchal Rani, Rajesh Kumar
{"title":"Low voltage colour modulation in hydrothermally grown Ni-Co nanoneedles for electrochromic application","authors":"Devesh K. Pathak,&nbsp;Anjali Chaudhary,&nbsp;Manushree Tanwar,&nbsp;Suchita Kandpal,&nbsp;Tanushree Ghosh,&nbsp;Chanchal Rani,&nbsp;Rajesh Kumar","doi":"10.1049/nde2.12012","DOIUrl":"10.1049/nde2.12012","url":null,"abstract":"<p>A nanostructured film of NiCo<sub>2</sub>O<sub>4</sub> has been prepared using a hydrothermal technique by simply using separate precursors to obtain nanoneedle-like architecture for electrochromic applications. A homogeneous film consisting of packed nanoneedles with moderate density, appearing translucent white in colour, has been obtained and characterized using XRD and Raman spectroscopy techniques for confirming the composition and structure. Electrochemical analysis of the film reveals that the film shows good electrochromic properties under the anodic scan of potential with strong stability. The mechanism of the electrode under the transformation from natural white to opaque dark brown colour has been understood with the help of an in situ optical absorption spectroscopy technique. The electrode is found electrochromically active with a bias of up to 2 V and shows 50% optical contrast which makes it a good candidate for application in a solid state electrochromic device.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"4 2","pages":"75-80"},"PeriodicalIF":2.7,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46178698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Structure for fast photonic medium on application of SDM communication using SiO2 doped with GeO2, and F Materials 二氧化硅掺杂GeO2和F材料在SDM通信中的快速光子介质结构
IF 2.7
IET Nanodielectrics Pub Date : 2021-03-17 DOI: 10.1049/nde2.12009
Bhagyalaxmi Behera, Shailendra K. Varshney, Mihir N. Mohanty
{"title":"Structure for fast photonic medium on application of SDM communication using SiO2 doped with GeO2, and F Materials","authors":"Bhagyalaxmi Behera,&nbsp;Shailendra K. Varshney,&nbsp;Mihir N. Mohanty","doi":"10.1049/nde2.12009","DOIUrl":"10.1049/nde2.12009","url":null,"abstract":"<p>This work presents a new approach for the design of an FMF with a Gaussian core and a trench in the cladding. For the proposed few-mode fibre (FMF), Fused Silica (SiO<sub>2</sub>) is considered as a host-material, whereas Germanium Oxide(GeO<sub>2</sub>) and Fluorine(F)are taken as the dopant for large data transmission. The mole percentages of the dopant material along with the fibre profile parameters are varied to achieve 10 linearly polarized (LP) modes through the proposed FMF. The proposed FMF structure is tested and verified through simulated experiments. The results indicate the proposed FMF structure with the mole percentage 11.5% of GeO<sub>2</sub>, 2% of F, and the normalized full-width-half-maximum (FWHM) of the core in the range of 4 to 10 supports 10 LP modes in the order of LP<sub>01</sub>, LP<sub>11</sub>, LP<sub>21</sub>, LP<sub>02</sub>, LP<sub>31</sub>, LP<sub>12</sub>, LP<sub>41</sub>, LP<sub>22</sub>, LP<sub>03</sub>, and LP<sub>51</sub>. The effective index difference (<i>Δn</i><sub><i>eff</i></sub>) between the adjacent LP modes is maintained greater than <math>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>×</mo>\u0000 <msup>\u0000 <mn>10</mn>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 </msup>\u0000 </mrow></math> and a weakly coupled 10x10 Gbps SDM transmission link is established through intensity-modulation and direct-detection (IM/DD) using the proposed Gaussian core-FMF. The link performance is analysed, verified and an acceptable bit-error-rate (BER) of 10<sup>−20</sup> is achieved over 50 km without amplifiers.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"4 3","pages":"107-120"},"PeriodicalIF":2.7,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41620803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Prussian blue‐based inorganic flexible electrochromism glucose sensor 普鲁士蓝基无机柔性电致变色葡萄糖传感器
IF 2.7
IET Nanodielectrics Pub Date : 2021-03-11 DOI: 10.1049/NDE2.12011
Anjali Chaudhary, Tanushree Ghosh, D. Pathak, S. Kandpal, M. Tanwar, C. Rani, Rajesh Kumar
{"title":"Prussian blue‐based inorganic flexible electrochromism glucose sensor","authors":"Anjali Chaudhary, Tanushree Ghosh, D. Pathak, S. Kandpal, M. Tanwar, C. Rani, Rajesh Kumar","doi":"10.1049/NDE2.12011","DOIUrl":"https://doi.org/10.1049/NDE2.12011","url":null,"abstract":"Flexible inorganic Prussian blue (PB) containing electrode hcas been synthesised using a simple electrodeposition technique for dual functions in electronics (electrochromism) and biology (glucose sensing) applications. Structural and spectroscopic characterisations of the fabricated film have been done using electron microscopy and Raman spectroscopy. Flexible inorganic electrochromic device is one of its kind having promising features with colour contrast (50%), coloration efficiency (80 cm 2 /C) and robust stability for more than 400 s. The prototype device contains only PB electrode as active electrochromic material with gel electrolyte in a pre ‐ designed device geometry that exhibits two primary colours, blue and green, with little amount of bias switching. Reversible redox processes have been found to be responsible for the electrochromism in PB containing flexible device. The same has been experimentally verified using spectroscopic and electrochemical techniques during device’s operation. Its additional use for glucose sensing purpose can be exploited for wearable electronics application. It is a first fully developed inorganic flexible device with superior electrochromic performance.","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46229863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Tuneable resonance frequency vibrational energy harvester with electret-embedded variable capacitor 可调谐谐振频率振动能量采集器与驻极体嵌入可变电容器
IF 2.7
IET Nanodielectrics Pub Date : 2021-03-10 DOI: 10.1049/nde2.12007
Xingchen Ma, Xiaoya Yang, Heinz von Seggern, Ying Dai, Pengfei He, Gerhard M. Sessler, Xiaoqing Zhang
{"title":"Tuneable resonance frequency vibrational energy harvester with electret-embedded variable capacitor","authors":"Xingchen Ma,&nbsp;Xiaoya Yang,&nbsp;Heinz von Seggern,&nbsp;Ying Dai,&nbsp;Pengfei He,&nbsp;Gerhard M. Sessler,&nbsp;Xiaoqing Zhang","doi":"10.1049/nde2.12007","DOIUrl":"10.1049/nde2.12007","url":null,"abstract":"<p>An electret-based electrostatic energy harvester featuring tuneable resonance frequency, small size, light weight, and high output power was designed and its performance predicted by the finite element method and verified by experiment. The device consists of a resilient fluorinated polyethylene propylene (FEP) electret film that is metallised on one side with a small seismic mass attached to its centre and an arc-shaped counter electrode. In principle, such an energy harvester is mechanically a mass-spring system and electrically a self-bias voltage variable capacitor and converts vibrational energy into electrical energy by electromechanical coupling. For an energy harvester sample with dimensions of 30 × 10 × 9 mm for which the last dimension denotes the initial depth of the centre of the harvester, the resonance frequency can be tuned from 17 to 70 Hz by stretching the length of the FEP film loaded with a given seismic mass of 0.06 g. For a seismic mass of 0.1 g, the harvester generated a power up to 797 <i>μ</i>W to a matching resistor at its resonance frequency of 17 Hz at an acceleration of 1×<i>g</i>, where <i>g</i> is the gravity of the earth. Such energy harvesters are promising candidates for use in self-powered electronic devices and wireless sensor network nodes.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"4 2","pages":"53-62"},"PeriodicalIF":2.7,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44468163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Impact of adding activated bentonite to thermally aged ester-based TiO2 nanofluids on insulation performance 热老化酯基TiO2纳米流体中添加活化膨润土对保温性能的影响
IF 2.7
IET Nanodielectrics Pub Date : 2021-03-07 DOI: 10.1049/nde2.12010
A. J. Amalanathan, N. Harid, H. Griffiths, R. Sarathi
{"title":"Impact of adding activated bentonite to thermally aged ester-based TiO2 nanofluids on insulation performance","authors":"A. J. Amalanathan,&nbsp;N. Harid,&nbsp;H. Griffiths,&nbsp;R. Sarathi","doi":"10.1049/nde2.12010","DOIUrl":"10.1049/nde2.12010","url":null,"abstract":"<p>The authors report the key findings from an experimental study that explored the use of activated bentonite for the reclamation of thermally aged ester-based transformer nanofluids to improve their insulation performance. Bentonite activated with acid treatment caused an increase in the specific surface area and pore volume of bentonite compared to the bentonite sample before treatment, thus imparting an improved adsorption capability. Physico-chemical diagnostic studies were carried out to characterise the activated bentonite. The insulation performance of the reclaimed natural ester and nano-filled ester fluid samples was assessed by measuring the corona inception voltage and breakdown voltage of each fluid sample, apart form measuring the flow electrification current using the spinning disk method. The results revealed that the reclamation process improved the corona inception voltage, dissipation factor and the breakdown voltage of the base ester fluid sample due to attraction of carbon particles to activated bentonite, but no significant variation was observed with nanofluids due to the depletion of the electrical double layer. The flow electrification current of ester and ester nanofluids reduced after treatment with activated bentonite, may be attributed to the interaction between copper and bentonite that alters the double layer formation responsible for the separation of charges.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"4 2","pages":"63-74"},"PeriodicalIF":2.7,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45861256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Nickel-cobalt-zinc ferrite nanoparticles for radio-frequency/terahertz frequency-selective surface application 用于射频/太赫兹频率选择性表面应用的镍钴锌铁氧体纳米颗粒
IF 2.7
IET Nanodielectrics Pub Date : 2021-02-22 DOI: 10.1049/nde2.12004
Meenakshi Arya, Mayuri N. Gandhi, Shriganesh S. Prabhu, Venu Gopal Achanta, Siddhartha P Duttagupta
{"title":"Nickel-cobalt-zinc ferrite nanoparticles for radio-frequency/terahertz frequency-selective surface application","authors":"Meenakshi Arya,&nbsp;Mayuri N. Gandhi,&nbsp;Shriganesh S. Prabhu,&nbsp;Venu Gopal Achanta,&nbsp;Siddhartha P Duttagupta","doi":"10.1049/nde2.12004","DOIUrl":"10.1049/nde2.12004","url":null,"abstract":"<p>Nanoparticles of Ni<sub>0.5</sub>Co<sub>0.2</sub>Zn<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> were prepared using the sol-gel combustion route. The nanoparticles were characterised by x-ray diffraction to confirm single-phase formation in a cubic spinel structure. Micro- and nanostructural analyses were carried out using field emission-scanning electron microscopy and field emission-transmission electron microscopy, respectively. A planetary ball milling technique was used to grind the powder into nanoparticles; the average particle size was 64 nm. Energy-dispersive X-ray spectroscopy was used to determine the atomic composition of the sample. Radio-frequency characteristics were recorded for dielectric measurement in a frequency range of 1 Hz to 15 MHz using a broadband dielectric spectrometer. Terahertz (THz) time-domain spectroscopy was performed to study THz-optical parameters such as refractive index, dielectric constant, and conductivity at room temperature in a frequency range of 0.3−2.2 THz using an indigenously developed THz time-domain spectroscopy setup. The magnetic properties of the sample were studied using a SQUID vibrating sample magnetometer under an applied magnetic field of ±10 kOe. An examination of M-H loops revealed that the saturation magnetization <math>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mi>s</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow></math>, remanent magnetization <math>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mi>r</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow></math> and coercivity <math>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mi>c</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow></math> increased with an increase in temperature from 300 to 50 K.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"4 3","pages":"98-106"},"PeriodicalIF":2.7,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44187405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信