Enhanced electromechanical performance of natural rubber dielectric elastomers achieved by in situ synthesis of silver nanoparticles on TiO2 nanoparticles

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Liyuan Yu, Tingting Hu, Dan Yang, Qungui Wei
{"title":"Enhanced electromechanical performance of natural rubber dielectric elastomers achieved by in situ synthesis of silver nanoparticles on TiO2 nanoparticles","authors":"Liyuan Yu,&nbsp;Tingting Hu,&nbsp;Dan Yang,&nbsp;Qungui Wei","doi":"10.1049/nde2.12030","DOIUrl":null,"url":null,"abstract":"<p>Dielectric elastomers (DEs) could transduce electrical energy to mechanical energy, but their applications are currently limited by the elevated driving voltages. To obtain satisfactory actuated strains at low voltages, titanate oxide@tannic acid-ferric ion@silver (labelled as TiO<sub>2</sub>@TA-Fe<sup>3+</sup>@Ag) satellite-structure nanoparticles were obtained in this study by in situ synthesis followed by incorporating the nanoparticles into natural rubber (NR) to prepare DE composites (denoted as TiO<sub>2</sub>@TA-Fe<sup>3+</sup>@Ag/NR). The presence of surface coating of TA-Fe<sup>3+</sup> and Ag nanoparticles improved the electromechanical performance of TiO<sub>2</sub>@TA-Fe<sup>3+</sup>@Ag/NR composites. Among the samples, 30 wt% TiO<sub>2</sub>@TA-Fe<sup>3+</sup>@Ag/NR composite displayed a relatively high actuated strain of 9.09% at a relatively low electric field of 22.78 kV/mm. In sum, the green, facile, and cost-effective surface modification method looks promising for improving the electromechanical properties of particulate-filled polymer composites.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12030","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

Abstract

Dielectric elastomers (DEs) could transduce electrical energy to mechanical energy, but their applications are currently limited by the elevated driving voltages. To obtain satisfactory actuated strains at low voltages, titanate oxide@tannic acid-ferric ion@silver (labelled as TiO2@TA-Fe3+@Ag) satellite-structure nanoparticles were obtained in this study by in situ synthesis followed by incorporating the nanoparticles into natural rubber (NR) to prepare DE composites (denoted as TiO2@TA-Fe3+@Ag/NR). The presence of surface coating of TA-Fe3+ and Ag nanoparticles improved the electromechanical performance of TiO2@TA-Fe3+@Ag/NR composites. Among the samples, 30 wt% TiO2@TA-Fe3+@Ag/NR composite displayed a relatively high actuated strain of 9.09% at a relatively low electric field of 22.78 kV/mm. In sum, the green, facile, and cost-effective surface modification method looks promising for improving the electromechanical properties of particulate-filled polymer composites.

Abstract Image

通过在二氧化钛纳米粒子上原位合成纳米银,提高了天然橡胶介电弹性体的机电性能
介电弹性体(DEs)可以将电能转化为机械能,但其应用目前受到驱动电压升高的限制。为了在低电压下获得满意的驱动应变,本研究通过原位合成获得钛酸盐oxide@tannic酸铁ion@silver(标记为TiO2@TA-Fe3+@Ag)卫星结构纳米颗粒,然后将纳米颗粒掺入天然橡胶(NR)中制备DE复合材料(标记为TiO2@TA-Fe3+@Ag/NR)。TA-Fe3+和Ag纳米颗粒表面涂层的存在提高了TiO2@TA-Fe3+@Ag/NR复合材料的机电性能。其中,30 wt% TiO2@TA-Fe3+@Ag/NR复合材料在22.78 kV/mm的较低电场下,激发应变较高,达到9.09%。总之,绿色、简便、经济的表面改性方法有望改善颗粒填充聚合物复合材料的机电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信