International Journal of Turbomachinery, Propulsion and Power最新文献

筛选
英文 中文
An Experimental Database for the Analysis of Bursting of a Laminar Separation Bubble 分析层流分离气泡破裂的实验数据库
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2024-01-10 DOI: 10.3390/ijtpp9010003
M. Dellacasagrande, D. Lengani, D. Simoni, M. Ubaldi
{"title":"An Experimental Database for the Analysis of Bursting of a Laminar Separation Bubble","authors":"M. Dellacasagrande, D. Lengani, D. Simoni, M. Ubaldi","doi":"10.3390/ijtpp9010003","DOIUrl":"https://doi.org/10.3390/ijtpp9010003","url":null,"abstract":"The bursting phenomenon consists in the switch of a laminar separation bubble from a short to a long configuration. In the former case, reduced effects on profile pressure distribution are typically observed with respect to the attached condition. On the contrary, long bubbles provoke significant variations in the loading coefficient upstream of the separation position, with increased risk of stall of the lifting surfaces. The present work presents an experimental database describing separated boundary layers evolving under different Reynolds numbers, adverse pressure gradients and free-stream turbulence levels. Overall, more than 80 flow conditions were tested concerning short and long bubbles for the characterization of separated flows under turbine-like conditions. Measurements were performed on a flat plate geometry using a fast-response Particle Image Velocimetry (PIV) system. For each flow case, two sets of 6000 flow records were acquired with an acquisition frequency equal to 300 and 1000 Hz. Based on existing criteria for the identification of the bursting phenomenon, the flow cases were clustered in terms of short and long bubble states. Additionally, the kind of instability (i.e., convective or absolute) developing into the separated boundary layer was identified based on flow statistics. The present data captures the existing link between the bursting of a laminar separation bubble and the onset of the absolute instability of the separated shear layer, with stationary vortices forming in the dead air region.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139441157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Leading-Edge Erosion on the Performance of Transonic Compressor Blades 前缘腐蚀对跨音速压缩机叶片性能的影响
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2024-01-09 DOI: 10.3390/ijtpp9010001
A. Hergt, Tobias Danninger, J. Klinner, S. Grund, M. Beversdorff, C. Werner-Spatz
{"title":"Effect of Leading-Edge Erosion on the Performance of Transonic Compressor Blades","authors":"A. Hergt, Tobias Danninger, J. Klinner, S. Grund, M. Beversdorff, C. Werner-Spatz","doi":"10.3390/ijtpp9010001","DOIUrl":"https://doi.org/10.3390/ijtpp9010001","url":null,"abstract":"In this paper, an experimental and numerical investigation of the effect of leading-edge erosion in transonic blades was performed. The measurements were carried out on a linear blade cascade in the Transonic Cascade Wind Tunnel of DLR in Cologne at two operating points with an inflow Mach number of 1.05 and 1.12. The numerical simulations were performed by ANSYS Germany. The type and specifications of the erosion for the study were derived from real engine blades and applied to the leading edges of the experimental cascade blades using a waterjet process, as well as modeled in detail and meshed within the numerical setup. Numerical simulations and extensive wake measurements were carried out on the cascades to evaluate the aerodynamic performance. The increase in losses was quantified to be 4 percent, and a reduction in deflection and a rise in pressure were detected at both operating points.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139444758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison Study of the k − kL − ω and γ − Reθ Transition Model in the Open-Water Performance Prediction of a Rim-Driven Thruster 轮缘驱动推进器开阔水域性能预测中 k - kL - ω 和 γ - Reθ 过渡模型的比较研究
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2024-01-09 DOI: 10.3390/ijtpp9010002
Bao Liu, M. Vanierschot, F. Buysschaert
{"title":"Comparison Study of the k − kL − ω and γ − Reθ Transition Model in the Open-Water Performance Prediction of a Rim-Driven Thruster","authors":"Bao Liu, M. Vanierschot, F. Buysschaert","doi":"10.3390/ijtpp9010002","DOIUrl":"https://doi.org/10.3390/ijtpp9010002","url":null,"abstract":"The present work examines the capabilities of two transition models implemented in ANSYS Fluent in the open-water performance prediction of a rim-driven thruster (RDT). The adopted models are the three-equation k−kL−ω and the four-equation γ−Reθ models. Both of them are firstly tested on a ducted propeller. The numerical results are compared with available experimental data, and a good correlation is found for both models. The simulations employing two transition models are then carried out on a four-bladed rim-driven thruster model and the results are compared with the SST k−ω turbulence model. It is observed that the streamline patterns on the blade surface are significantly different between the transition and fully turbulent models. The transition models can reveal the laminar region on the blade while the fully turbulent model assumes the boundary layer is entirely turbulent, resulting in a considerable difference in torque prediction. It is noted that unlike the fully turbulent model, the transition models are quite sensitive to the free-stream turbulence quantities such as turbulent intensity and turbulent viscosity ratio, as these quantities determine the onset of the transition process. The open-water performance of the studied RDT and resolved flow field are also presented and discussed.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139443085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Comparison of Steam Turbine Control Valve Geometries and Their Dynamic Behavior at Part Load 蒸汽轮机控制阀几何形状及其部分负荷下的动态行为比较
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-12-18 DOI: 10.3390/ijtpp8040055
Christian Windemuth, M. Lange, Ronald Mailach
{"title":"A Comparison of Steam Turbine Control Valve Geometries and Their Dynamic Behavior at Part Load","authors":"Christian Windemuth, M. Lange, Ronald Mailach","doi":"10.3390/ijtpp8040055","DOIUrl":"https://doi.org/10.3390/ijtpp8040055","url":null,"abstract":"A growing significance of flexible steam turbine operation challenges the control of turbines, as part load operation using control valves can be accompanied by highly unsteady flow conditions. The increased dynamic load induced by pressure forces can reduce the reliable operating range, weaken the valve, and lead to mechanical failures. The geometry of the valve plays a major role in the reduction of dynamic forces. Using a scaled control valve, experiments were conducted with a focus on the dynamic behavior of the valve head. A spherical valve shape favoring unstable operation was used as a reference case, and the desired instability was proven by measurements. Different modified valve geometries based on literature featuring separation edges were then tested against the spherical shape. Results indicate the improved stability of the modified geometries over the reference geometry. For most of the operating range, vibrations were drastically reduced, and the overall flow stabilized.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139174551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NREL-5MW Wind Turbine Noise Prediction by FWH-LES 通过 FWH-LES 预测 NREL-5MW 风机噪声
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-12-06 DOI: 10.3390/ijtpp8040054
Claudio Bernardi, F. Porcacchia, Claudio Testa, P. De Palma, Stefano Leonardi, S. Cherubini
{"title":"NREL-5MW Wind Turbine Noise Prediction by FWH-LES","authors":"Claudio Bernardi, F. Porcacchia, Claudio Testa, P. De Palma, Stefano Leonardi, S. Cherubini","doi":"10.3390/ijtpp8040054","DOIUrl":"https://doi.org/10.3390/ijtpp8040054","url":null,"abstract":"This paper deals with large onshore wind turbine aeroacoustics. Noise from the NREL 5 MW device is predicted by the permeable-surface Ffowcs Williams–Hawkings equation (FWH-P), starting from the postprocessing of LES data on different acoustic surfaces S. Their size and placement is aimed at embedding most of the aerodynamic sources of sound surrounding rotor and nacelle. Due to the presence of eddies that inevitably cross S, this paper compares results from open and closed acoustic surfaces, and the outflow disk averaging technique. The issues related to the interpolation process of LES data on S is discussed as well. In order to assess the LES/FWH-P aeroacoustic platform, LES and FWH-P pressures are compared in the very-near field. It is shown that, within the limits of the discretization settings imposed by the interpolation procedure and for the Reynolds number working condition investigated herein, the lack of quadrupole sources outside the permeable surface(s) deeply affect the quality of FWH-P acoustic pressures with respect to direct LES signals.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138597388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Modelling of the 3D Unsteady Flow of an Inlet Particle Separator for Turboshaft Engines 涡轮轴发动机进气颗粒分离器的三维非稳态流动数值建模
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-12-04 DOI: 10.3390/ijtpp8040052
Marco Castaldi, Ignacio Mayo, Jacques Demolis, Frank Eulitz
{"title":"Numerical Modelling of the 3D Unsteady Flow of an Inlet Particle Separator for Turboshaft Engines","authors":"Marco Castaldi, Ignacio Mayo, Jacques Demolis, Frank Eulitz","doi":"10.3390/ijtpp8040052","DOIUrl":"https://doi.org/10.3390/ijtpp8040052","url":null,"abstract":"Helicopter and turboprop engines are susceptible to the ingestion of debris and other foreign objects, especially during take-off, landing, and hover. To avoid deleterious effects, filters such as Inlet Particle Separators (IPS) can be installed. However, the performance and limitations of these systems have to be investigated before the actual equipment can be installed in the aircraft powerplant. In this paper, we propose different numerical methods with increasing resolution in order to provide an aerodynamic characterization of the IPS, i.e., from a simple semi-empirical model to 3D large eddy simulation. We validate these numerical tools that could aid IPS design using experimental data in terms of global parameters such as separation efficiency and pressure losses. For each of those tools, we underline weaknesses and potential benefits in industry practices. Unsteady flow analysis reveals that detached eddy simulation is the trade-off choice that allows designers to most effectively plan experimental campaigns and mitigate risks.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138604664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fan Stage Design and Performance Optimization for Low Specific Thrust Turbofans 低比推力涡轮风扇的风扇级设计和性能优化
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-12-04 DOI: 10.3390/ijtpp8040053
Oliver Sjögren, T. Grönstedt, A. Lundbladh, C. Xisto
{"title":"Fan Stage Design and Performance Optimization for Low Specific Thrust Turbofans","authors":"Oliver Sjögren, T. Grönstedt, A. Lundbladh, C. Xisto","doi":"10.3390/ijtpp8040053","DOIUrl":"https://doi.org/10.3390/ijtpp8040053","url":null,"abstract":"In modern turbofan engines, the bypass section of the fan stage alone provides the majority of the total thrust required in cruise, and the size of the fan has a considerable effect on the overall engine weight and nacelle drag. Thrust requirements in different parts of the flight envelope must also be satisfied together with sufficient margins towards stalling. An accurate description of the interdependencies between the relevant performance and design attributes of the fan stage alone—such as efficiency, surge margin, fan-face Mach number, stage loading, flow coefficient, and aspect ratio—are therefore necessary to estimate system-level objectives such as mission fuel burn and the direct operating cost with enough confidence during the conceptual design phase. The contribution of this study is to apply a parametric optimization approach to the conceptual design of fan stages for low specific thrust turbofans based on the streamline curvature method. Trade-offs between fan stage attributes for Pareto-optimal solutions are modeled by training Kriging surrogate models on the results from the parametric optimization. A case study is provided in the end to demonstrate the potential implications of including a higher level of fan-stage parameter interdependency in an engine systems model. Results implied that being able to predict the rotor solidity required to maintain a given average blade loading—in addition to stage efficiency—is of significant importance when it comes to evaluating the trade-off between engine weight and thrust-specific fuel consumption.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138601536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Porosity and Injection Ratio on the Performance of Transpiration Cooling through Gyroids 孔隙率和喷射比对通过陀螺仪进行蒸气冷却的性能的影响
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-12-01 DOI: 10.3390/ijtpp8040050
Benjamin J. Brimacombe, James A. Scobie, Joseph M. Flynn, C. Sangan, Oliver J Pountney
{"title":"Effect of Porosity and Injection Ratio on the Performance of Transpiration Cooling through Gyroids","authors":"Benjamin J. Brimacombe, James A. Scobie, Joseph M. Flynn, C. Sangan, Oliver J Pountney","doi":"10.3390/ijtpp8040050","DOIUrl":"https://doi.org/10.3390/ijtpp8040050","url":null,"abstract":"This paper presents experimental measurements of adiabatic effectiveness for three transpiration cooling porosities (ϕ= 0.3, 0.4, and 0.5) constructed from gyroid lattice structures. To the authors’ knowledge, this is the first use of a Triply Periodic Minimal Surface (TPMS) function to produce transpiration test coupons of varying porosity. Polymer gyroid lattice structures were successfully printed using Stereolithography (SLA) down to ϕ= 0.3 for a print resolution of 25 microns and unit cell size of 2 mm. Cooling performance was measured in a small-scale wind tunnel. High-resolution Infrared Thermography was used to determine wall temperatures downstream of the porous section. When tested at both common blowing ratios (M = 0.029, 0.048, and 0.062) and common injection ratios (F = 0.010, 0.017, and 0.022) the cooling performance was found to be dependent on porosity for constant M but not for constant F. Having determined F as the more important parameter for comparison, results are presented alongside transpiration and effusion data from literature.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138620481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of a Numerical Surge Limit by Means of an Enhanced Greitzer Compressor Model 用增强型Greitzer压缩机模型确定喘振数值极限
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-11-14 DOI: 10.3390/ijtpp8040048
Tobias Haeckel, Dominik Paul, Sebastian Leichtfuß, Heinz-Peter Schiffer, Werner Eißler
{"title":"Determination of a Numerical Surge Limit by Means of an Enhanced Greitzer Compressor Model","authors":"Tobias Haeckel, Dominik Paul, Sebastian Leichtfuß, Heinz-Peter Schiffer, Werner Eißler","doi":"10.3390/ijtpp8040048","DOIUrl":"https://doi.org/10.3390/ijtpp8040048","url":null,"abstract":"The surge limit of centrifugal compressors is a key parameter in the design process of modern turbochargers. Numerical methods like steady-state simulations are state-of-the-art methods for predicting the performance of the centrifugal compressor. In contrast to that, the determination of the surge limit with any numerical method is still an unsolved challenge. Since the extensive work of Greitzer and many other researchers in this field, it is well-known that surge is a system-dependent phenomenon. In the case of steady-state simulations, the simulation domain is chosen to be as small as possible due to the numerical cost. This simply implies that there is no system information included in the numerical model. Therefore, it is not possible to determine any system-dependent surge limit with today’s applied numerical methods. To overcome this issue, an enhanced Greitzer surge model, which has been developed at Tu Darmstadt, should act as a link between the simulation and the system in which the compressor will be operated. The focus of this paper will rather be on the methodology of determining the surge limit by means of numerical data than on the surge model itself. The methodology will be validated by experimental data of different systems.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134992174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Current Gap between Design Optimization and Experiments for Transonic Compressor Blades 跨声速压气机叶片设计优化与实验之间的差距
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-11-13 DOI: 10.3390/ijtpp8040047
Edwin Joseph Munoz Lopez, Alexander Hergt, Till Ockenfels, Sebastian Grund, Volker Gümmer
{"title":"The Current Gap between Design Optimization and Experiments for Transonic Compressor Blades","authors":"Edwin Joseph Munoz Lopez, Alexander Hergt, Till Ockenfels, Sebastian Grund, Volker Gümmer","doi":"10.3390/ijtpp8040047","DOIUrl":"https://doi.org/10.3390/ijtpp8040047","url":null,"abstract":"The successful design of compressor blades through numerical optimization relies on accurate CFD-RANS solvers that are able to capture the general performance of a given design candidate. However, this is a difficult task to achieve in transonic flow conditions, where the flow is dominated by inherently unsteady shock effects. In order to assess the current gap between numerics and experiments, the DLR has tested the recently optimized Transonic Cascade TEAMAero at the transonic cascade wind tunnel. The tests were performed at a Mach number of 1.2 and with inflow angles between 145 and 147. The results indicate satisfactory agreement across the expected working range, over which the cascade losses were consistently predicted within a 3–6% error. However, some key differences are observed in the details of the wake and in the performance near the endpoints of the working range. This comparison helps validate the design process but also informs its constraints based on the limitations of CFD-RANS solvers.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136351877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信