涡旋叶片蜗壳式离心泵液/气输运三维流动模拟研究

IF 1.3 Q2 ENGINEERING, AEROSPACE
Markus Hundshagen, Kevin Rave, M. Mansour, D. Thévenin, R. Skoda
{"title":"涡旋叶片蜗壳式离心泵液/气输运三维流动模拟研究","authors":"Markus Hundshagen, Kevin Rave, M. Mansour, D. Thévenin, R. Skoda","doi":"10.3390/ijtpp8030028","DOIUrl":null,"url":null,"abstract":"A hybrid two-phase flow solver is proposed, based on an Euler–Euler two-fluid model with continuous blending of a Volume-of-Fluid method when phase interfaces of coherent gas pockets are to be resolved. In a preceding study on a two-dimensional bladed research pump with reduced rotational speed, the transition from bubbly flow to coherent steady gas pockets observed in optical experiments with liquid/gas flow could be well captured by the hybrid solver. In the present study, the experiments and solver validation are extended to an industrial-scale centrifugal pump with twisted three-dimensional blades and elevated design rotational speed. The solver is combined with a population balance model, and a scale-adaptive turbulence model is employed. Compared to the two-dimensional bladed pump, the transition from agglomerated bubbles flow to attached gas pockets is shifted to larger gas loading, which is well captured by the simulation. The pump head drop with increasing gas load is also reproduced, showing the hybrid solver’s validity for realistic pump operation conditions.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Flow Simulation by a Hybrid Two-Phase Solver for the Assessment of Liquid/Gas Transport in a Volute-Type Centrifugal Pump with Twisted Blades\",\"authors\":\"Markus Hundshagen, Kevin Rave, M. Mansour, D. Thévenin, R. Skoda\",\"doi\":\"10.3390/ijtpp8030028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid two-phase flow solver is proposed, based on an Euler–Euler two-fluid model with continuous blending of a Volume-of-Fluid method when phase interfaces of coherent gas pockets are to be resolved. In a preceding study on a two-dimensional bladed research pump with reduced rotational speed, the transition from bubbly flow to coherent steady gas pockets observed in optical experiments with liquid/gas flow could be well captured by the hybrid solver. In the present study, the experiments and solver validation are extended to an industrial-scale centrifugal pump with twisted three-dimensional blades and elevated design rotational speed. The solver is combined with a population balance model, and a scale-adaptive turbulence model is employed. Compared to the two-dimensional bladed pump, the transition from agglomerated bubbles flow to attached gas pockets is shifted to larger gas loading, which is well captured by the simulation. The pump head drop with increasing gas load is also reproduced, showing the hybrid solver’s validity for realistic pump operation conditions.\",\"PeriodicalId\":36626,\"journal\":{\"name\":\"International Journal of Turbomachinery, Propulsion and Power\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbomachinery, Propulsion and Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ijtpp8030028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbomachinery, Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijtpp8030028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

针对相干气穴相界面的求解问题,提出了一种基于连续混合的Euler-Euler两流体模型的混合两相流求解方法。在之前对二维叶片研究泵的降低转速的研究中,混合求解器可以很好地捕获在液/气流动光学实验中观察到的从气泡流到相干稳态气穴的转变。在本研究中,实验和求解器验证扩展到具有扭曲三维叶片和提高设计转速的工业规模离心泵。求解器与种群平衡模型相结合,采用尺度自适应湍流模型。与二维叶片泵相比,从聚集气泡流到附着气囊的转变转变为更大的气体负荷,模拟结果很好地捕捉到了这一点。模拟了泵的扬程随气体负荷的增加而下降的情况,表明了混合求解方法在实际泵运行条件下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-Dimensional Flow Simulation by a Hybrid Two-Phase Solver for the Assessment of Liquid/Gas Transport in a Volute-Type Centrifugal Pump with Twisted Blades
A hybrid two-phase flow solver is proposed, based on an Euler–Euler two-fluid model with continuous blending of a Volume-of-Fluid method when phase interfaces of coherent gas pockets are to be resolved. In a preceding study on a two-dimensional bladed research pump with reduced rotational speed, the transition from bubbly flow to coherent steady gas pockets observed in optical experiments with liquid/gas flow could be well captured by the hybrid solver. In the present study, the experiments and solver validation are extended to an industrial-scale centrifugal pump with twisted three-dimensional blades and elevated design rotational speed. The solver is combined with a population balance model, and a scale-adaptive turbulence model is employed. Compared to the two-dimensional bladed pump, the transition from agglomerated bubbles flow to attached gas pockets is shifted to larger gas loading, which is well captured by the simulation. The pump head drop with increasing gas load is also reproduced, showing the hybrid solver’s validity for realistic pump operation conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
21.40%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信