Impact of Unsteady Wakes on the Secondary Flows of a High-Speed Low-Pressure Turbine Cascade

IF 1.3 Q2 ENGINEERING, AEROSPACE
Gustavo Lopes, Loris Simonassi, Sergio Lavagnoli
{"title":"Impact of Unsteady Wakes on the Secondary Flows of a High-Speed Low-Pressure Turbine Cascade","authors":"Gustavo Lopes, Loris Simonassi, Sergio Lavagnoli","doi":"10.3390/ijtpp8040036","DOIUrl":null,"url":null,"abstract":"The aerodynamics of a high-speed low-pressure turbine (LPT) cascade were investigated under steady and unsteady inlet flows. The tests were performed at outlet Mach (M) and Reynolds numbers (Re) of 0.90 and 70k, respectively. Unsteady wakes were simulated by means of a wake generator equipped with bars. A bar reduced frequency (f+) of ∼0.95 was used for the unsteady case. The inlet flow field was characterized in terms of the total pressure profile and incidence. The blade aerodynamics at midspan and the secondary flow region were investigated by means of pneumatic taps and hot-film sensors. The latter provided a novel view into the impact of the secondary flows on the heat transfer topology on the blade suction side (SS). The cascade performance was quantified in terms of the outlet flow angle and losses by means of a directional multi-hole probe. The results report the phase-averaged impact of unsteady wakes on the secondary flow structures in an open test case high-speed LPT geometry.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbomachinery, Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijtpp8040036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

Abstract

The aerodynamics of a high-speed low-pressure turbine (LPT) cascade were investigated under steady and unsteady inlet flows. The tests were performed at outlet Mach (M) and Reynolds numbers (Re) of 0.90 and 70k, respectively. Unsteady wakes were simulated by means of a wake generator equipped with bars. A bar reduced frequency (f+) of ∼0.95 was used for the unsteady case. The inlet flow field was characterized in terms of the total pressure profile and incidence. The blade aerodynamics at midspan and the secondary flow region were investigated by means of pneumatic taps and hot-film sensors. The latter provided a novel view into the impact of the secondary flows on the heat transfer topology on the blade suction side (SS). The cascade performance was quantified in terms of the outlet flow angle and losses by means of a directional multi-hole probe. The results report the phase-averaged impact of unsteady wakes on the secondary flow structures in an open test case high-speed LPT geometry.
非定常尾迹对高速低压涡轮叶栅二次流动的影响
研究了高速低压涡轮叶栅在定常和非定常进口流动下的空气动力学特性。试验分别在出口马赫数(M)为0.90和雷诺数(Re)为70k的条件下进行。采用带杆的尾流发生器模拟了非定常尾流。在非定常情况下,采用~ 0.95的棒减频(f+)。用总压分布和入射角对进口流场进行了表征。采用气动抽头和热膜传感器研究了叶片跨中和二次流区的空气动力学特性。后者为二次流对叶片吸力侧(SS)传热拓扑的影响提供了新的视角。利用定向多孔探头,用出口气流角和损失来量化叶栅的性能。结果报告了非定常尾迹对高速LPT几何结构二次流结构的相位平均影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
21.40%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信