International Journal of Turbomachinery, Propulsion and Power最新文献

筛选
英文 中文
Unsteady Flows and Component Interaction in Turbomachinery 涡轮机械中的非稳态流动和部件相互作用
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2024-04-05 DOI: 10.3390/ijtpp9020015
Simone Salvadori, Massimiliano Insinna, Francesco Martelli
{"title":"Unsteady Flows and Component Interaction in Turbomachinery","authors":"Simone Salvadori, Massimiliano Insinna, Francesco Martelli","doi":"10.3390/ijtpp9020015","DOIUrl":"https://doi.org/10.3390/ijtpp9020015","url":null,"abstract":"Unsteady component interaction represents a crucial topic in turbomachinery design and analysis. Combustor/turbine interaction is one of the most widely studied topics both using experimental and numerical methods due to the risk of failure of high-pressure turbine blades by unexpected deviation of hot flow trajectory and local heat transfer characteristics. Compressor/combustor interaction is also of interest since it has been demonstrated that, under certain conditions, a non-uniform flow field feeds the primary zone of the combustor where the high-pressure compressor blade passing frequency can be clearly individuated. At the integral scale, the relative motion between vanes and blades in compressor and turbine stages governs the aerothermal performance of the gas turbine, especially in the presence of shocks. At the inertial scale, high turbulence levels generated in the combustion chamber govern wall heat transfer in the high-pressure turbine stage, and wakes generated by low-pressure turbine vanes interact with separation bubbles at low-Reynolds conditions by suppressing them. The necessity to correctly analyze these phenomena obliges the scientific community, the industry, and public funding bodies to cooperate and continuously build new test rigs equipped with highly accurate instrumentation to account for real machine effects. In computational fluid dynamics, researchers developed fast and reliable methods to analyze unsteady blade-row interaction in the case of uneven blade count conditions as well as component interaction by using different closures for turbulence in each domain using high-performance computing. This research effort results in countless publications that contribute to unveiling the actual behavior of turbomachinery flow. However, the great number of publications also results in fragmented information that risks being useless in a practical situation. Therefore, it is useful to collect the most relevant outcomes and derive general conclusions that may help the design of next-gen turbomachines. In fact, the necessity to meet the emission limits defined by the Paris agreement in 2015 obliges the turbomachinery community to consider revolutionary cycles in which component interaction plays a crucial role. In the present paper, the authors try to summarize almost 40 years of experimental and numerical research in the component interaction field, aiming at both providing a comprehensive overview and defining the most relevant conclusions obtained in this demanding research field.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140736027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationship between Casing Pressure and Non-Synchronous Vibration in an Axial Compressor 轴向压缩机中套管压力与非同步振动之间的关系
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2024-04-02 DOI: 10.3390/ijtpp9020014
Valerie Hernley, A. Jemcov, Jeongseek Kang, Matthew Montgomery, Scott C. Morris
{"title":"Relationship between Casing Pressure and Non-Synchronous Vibration in an Axial Compressor","authors":"Valerie Hernley, A. Jemcov, Jeongseek Kang, Matthew Montgomery, Scott C. Morris","doi":"10.3390/ijtpp9020014","DOIUrl":"https://doi.org/10.3390/ijtpp9020014","url":null,"abstract":"The relationship between aerodynamic forcing and non-synchronous vibration (NSV) in axial compressors remains difficult to ascertain from experimental measurements. In this work, the relationship between casing pressure and blade vibration was investigated using experimental observations from a 1.5-stage axial compressor under off-design conditions. The wavenumber-dependent auto-spectral density (ASD) of casing pressure was introduced to aid in understanding the characteristics of pressure fluctuations that lead to the aeromechanical response. Specifically, the rotor blade’s natural frequencies and nodal diameters could be directly compared with the pressure spectra. This analysis indicated that the rotating disturbances coincided with the first bending (1B) and second bending (2B) vibration modes at certain frequencies and wavenumbers. The non-intrusive stress measurement system (NSMS) data showed elevated vibration amplitudes for the coincident nodal diameters. The amplitude of the wavenumber-dependent pressure spectra was projected onto the single-degree-of-freedom (SDOF) transfer function and was compared with the measured vibration amplitude. The results showed a near-linear relationship between the pressure and vibration data.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140754354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical and Experimental Study of Flutter in a Realistic Labyrinth Seal 对真实迷宫密封中的扑动进行数值和实验研究
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2024-04-01 DOI: 10.3390/ijtpp9020013
Óscar Bermejo, Juan Manuel Gallardo, A. Sotillo, Arnau Altuna, Roberto Alonso, Andoni Puente
{"title":"Numerical and Experimental Study of Flutter in a Realistic Labyrinth Seal","authors":"Óscar Bermejo, Juan Manuel Gallardo, A. Sotillo, Arnau Altuna, Roberto Alonso, Andoni Puente","doi":"10.3390/ijtpp9020013","DOIUrl":"https://doi.org/10.3390/ijtpp9020013","url":null,"abstract":"Labyrinth seals are commonly used in turbomachinery in order to control leakage flows. Flutter is one of the most dangerous potential issues for them, leading to High Cycle Fatigue (HCF) life considerations or even mechanical failure. This phenomenon depends on the interaction between aerodynamics and structural dynamics; mainly due to the very high uncertainties regarding the details of the fluid flow through the component, it is very hard to predict accurately. In 2014, as part of the E-Break research project funded by the European Union (EU), an experimental campaign regarding the flutter behaviour of labyrinth seals was conducted at “Centro de Tecnologias Aeronauticas” (CTA). During this campaign, three realistic seals were tested at different rotational speeds, and the pressure ratio where the flutter onset appeared was determined. The test was reproduced using a linearised uncoupled structural-fluid methodology of analysis based on Computational Fluid Dynamics (CFD) simulations, with results only in moderate agreement with experimental data. A procedure to adjust the CFD simulations to the steady flow measurements was developed. Once this method was applied, the matching between flutter predictions and the measured data improved, but some discrepancies could still be found. Finally, a set of simulations to retain the influence of the external cavities was run, which further improved the agreement with the testing data.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140763771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turbomachinery Noise Review 涡轮机械噪音审查
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2024-03-13 DOI: 10.3390/ijtpp9010011
Stéphane Moreau, Michel Roger
{"title":"Turbomachinery Noise Review","authors":"Stéphane Moreau, Michel Roger","doi":"10.3390/ijtpp9010011","DOIUrl":"https://doi.org/10.3390/ijtpp9010011","url":null,"abstract":"The present paper is aimed at providing an updated review of prediction methods for the aerodynamic noise of ducted rotor–stator stages. Indeed, ducted rotating-blade technologies are in continuous evolution and are increasingly used for aeronautical propulsion units, power generation and air conditioning systems. Different needs are faced from the early design stage to the final definition of a machine. Fast-running, approximate analytical approaches and high-fidelity numerical simulations are considered the best-suited tools for each, respectively. Recent advances are discussed, with emphasis on their pros and cons.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140247067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Quantification of Blade Vibration Amplitude in Turbomachinery 涡轮机械叶片振动振幅的量化
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2024-03-04 DOI: 10.3390/ijtpp9010010
Alexandra P. Schneider, B. Paoletti, X. Ottavy, C. Brandstetter
{"title":"Quantification of Blade Vibration Amplitude in Turbomachinery","authors":"Alexandra P. Schneider, B. Paoletti, X. Ottavy, C. Brandstetter","doi":"10.3390/ijtpp9010010","DOIUrl":"https://doi.org/10.3390/ijtpp9010010","url":null,"abstract":"Experimental monitoring of blade vibration in turbomachinery is typically based on blade-mounted strain gauges. Their signals are used to derive vibration amplitudes which are compared to modal scope limits, including a safety factor. According to industrial guidelines, this factor is chosen conservatively to ensure safe operation of the machine. Within the experimental campaign with the open-test-case composite fan ECL5/CATANA, which is representative for modern lightweight Ultra High Bypass Ratio (UHBR) architectures, measurements close to the stability limit have been conducted. Investigation of phenomena like non-synchronous vibrations (NSV) and rotating stall require a close approach to the stability limit and hence demand for accurate (real-time) quantification of vibration amplitudes to ensure secure operation without exhaustive safety margins. Historically, short-time Fourier transforms of vibration sensors are used, but the complex nature of the mentioned coupled phenomena has an influence on amplitude accuracy, depending on evaluation parameters, as presented in a previous study using fast-response wall-pressure transducers. The present study investigates the sensitivity of blade vibration data to evaluation parameters for different spectral analysis methods and provides guidelines for fast and robust surveillance of critical vibration modes.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140265685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multidisciplinary Automation in Design of Turbine Vane Cooling Channels 涡轮叶片冷却通道设计中的多学科自动化
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2024-02-19 DOI: 10.3390/ijtpp9010007
Sanjay Nambiar, Anan Ashrabi Ananno, Herman Titus, Anton Wiberg, M. Tarkian
{"title":"Multidisciplinary Automation in Design of Turbine Vane Cooling Channels","authors":"Sanjay Nambiar, Anan Ashrabi Ananno, Herman Titus, Anton Wiberg, M. Tarkian","doi":"10.3390/ijtpp9010007","DOIUrl":"https://doi.org/10.3390/ijtpp9010007","url":null,"abstract":"In the quest to enhance the efficiency of gas turbines, there is a growing demand for innovative solutions to optimize high-pressure turbine blade cooling. However, the traditional methods for achieving this optimization are known for their complexity and time-consuming nature. We present an automation framework to streamline the design, meshing, and structural analysis of cooling channels, achieving design automation at both the morphological and topological levels. This framework offers a comprehensive approach for evaluating turbine blade lifetime and enabling multidisciplinary design analyses, emphasizing flexibility in turbine cooling design through high-level CAD templates and knowledge-based engineering. The streamlined automation process, supported by a knowledge base, ensures continuity in both the mesh and structural simulation automations, contributing significantly to advancements in gas turbine technology.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140450222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Algorithm-Based Optimisation of a Double-Wall Effusion Cooling System for a High-Pressure Turbine Nozzle Guide Vane 基于遗传算法的高压涡轮喷嘴导叶双壁喷射冷却系统优化设计
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2024-02-02 DOI: 10.3390/ijtpp9010006
Michael van de Noort, Peter T. Ireland
{"title":"Genetic Algorithm-Based Optimisation of a Double-Wall Effusion Cooling System for a High-Pressure Turbine Nozzle Guide Vane","authors":"Michael van de Noort, Peter T. Ireland","doi":"10.3390/ijtpp9010006","DOIUrl":"https://doi.org/10.3390/ijtpp9010006","url":null,"abstract":"Double-Wall Effusion Cooling schemes present an opportunity for aeroengine designers to achieve high overall cooling effectiveness and convective cooling efficiency in High-Pressure Turbine blades with reduced coolant usage compared to conventional cooling technologies. This is accomplished by combining impingement, pin-fin and effusion cooling. Optimising these cooling schemes is crucial to ensuring that cooling is achieved sufficiently at high-heat-flux regions and not overused at low-heat-flux ones. Due to the high number of design variables employed in these systems, optimisation through the use of Computational Fluid Dynamics (CFD) simulations can be a computationally costly and time-consuming process. This study makes use of a Low-Order Flow Network Model (LOM), developed, validated and presented previously, which quickly assesses the pressure, temperature, mass flow and heat flow distributions through a Double-Wall Effusion Cooling scheme. Results generated by the LOM are used to rapidly produce an ideal cooling system design through the use of an Evolutionary Genetic Algorithm (GA) optimisation process. The objective is to minimise the coolant mass flow whilst maintaining acceptable metal cooling effectiveness around the external surface of the blade and ensuring that the Backflow Margin for all film holes is above a selected threshold. For comparison, a Genetic Aggregation model-based optimisation using CFD simulations in ANSYS Workbench is also conducted. Results for both the reduction of coolant mass flow and the total optimisation runtime are analysed alongside those from the LOM, demonstrating the benefit of rapid low-order solving techniques.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139870731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Algorithm-Based Optimisation of a Double-Wall Effusion Cooling System for a High-Pressure Turbine Nozzle Guide Vane 基于遗传算法的高压涡轮喷嘴导叶双壁喷射冷却系统优化设计
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2024-02-02 DOI: 10.3390/ijtpp9010006
Michael van de Noort, Peter T. Ireland
{"title":"Genetic Algorithm-Based Optimisation of a Double-Wall Effusion Cooling System for a High-Pressure Turbine Nozzle Guide Vane","authors":"Michael van de Noort, Peter T. Ireland","doi":"10.3390/ijtpp9010006","DOIUrl":"https://doi.org/10.3390/ijtpp9010006","url":null,"abstract":"Double-Wall Effusion Cooling schemes present an opportunity for aeroengine designers to achieve high overall cooling effectiveness and convective cooling efficiency in High-Pressure Turbine blades with reduced coolant usage compared to conventional cooling technologies. This is accomplished by combining impingement, pin-fin and effusion cooling. Optimising these cooling schemes is crucial to ensuring that cooling is achieved sufficiently at high-heat-flux regions and not overused at low-heat-flux ones. Due to the high number of design variables employed in these systems, optimisation through the use of Computational Fluid Dynamics (CFD) simulations can be a computationally costly and time-consuming process. This study makes use of a Low-Order Flow Network Model (LOM), developed, validated and presented previously, which quickly assesses the pressure, temperature, mass flow and heat flow distributions through a Double-Wall Effusion Cooling scheme. Results generated by the LOM are used to rapidly produce an ideal cooling system design through the use of an Evolutionary Genetic Algorithm (GA) optimisation process. The objective is to minimise the coolant mass flow whilst maintaining acceptable metal cooling effectiveness around the external surface of the blade and ensuring that the Backflow Margin for all film holes is above a selected threshold. For comparison, a Genetic Aggregation model-based optimisation using CFD simulations in ANSYS Workbench is also conducted. Results for both the reduction of coolant mass flow and the total optimisation runtime are analysed alongside those from the LOM, demonstrating the benefit of rapid low-order solving techniques.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139810964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a 130 MW Axial Turbine Operating with a Supercritical Carbon Dioxide Mixture for the SCARABEUS Project 为 SCARABEUS 项目设计使用超临界二氧化碳混合物的 130 兆瓦轴流式涡轮机
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2024-02-02 DOI: 10.3390/ijtpp9010005
Abdelrahman S. Abdeldayem, Salma I. Salah, O. Aqel, M. White, A. Sayma
{"title":"Design of a 130 MW Axial Turbine Operating with a Supercritical Carbon Dioxide Mixture for the SCARABEUS Project","authors":"Abdelrahman S. Abdeldayem, Salma I. Salah, O. Aqel, M. White, A. Sayma","doi":"10.3390/ijtpp9010005","DOIUrl":"https://doi.org/10.3390/ijtpp9010005","url":null,"abstract":"Supercritical carbon dioxide (sCO2) can be mixed with dopants such as titanium tetrachloride (TiCl4), hexafluoro-benzene (C6F6), and sulphur dioxide (SO2) to raise the critical temperature of the working fluid, allowing it to condense at ambient temperatures in dry solar field locations. The resulting transcritical power cycles have lower compression work and higher thermal efficiency. This paper presents the aerodynamic flow path design of a utility-scale axial turbine operating with an 80–20% molar mix of CO2 and SO2. The preliminary design is obtained using a mean line turbine design method based on the Aungier loss model, which considers both mechanical and rotor dynamic criteria. Furthermore, steady-state 3D computational fluid dynamic (CFD) simulations are set up using the k-ω SST turbulence model, and blade shape optimisation is carried out to improve the preliminary design while maintaining acceptable stress levels. It was found that increasing the number of stages from 4 to 14 increased the total-to-total efficiency by 6.3% due to the higher blade aspect ratio, which reduced the influence of secondary flow losses, as well as the smaller tip diameter, which minimised the tip clearance losses. The final turbine design had a total-to-total efficiency of 92.9%, as predicted by the CFD results, with a maximum stress of less than 260 MPa and a mass flow rate within 1% of the intended cycle’s mass flow rate. Optimum aerodynamic performance was achieved with a 14-stage design where the hub radius and the flow path length are 310 mm and 1800 mm, respectively. Off-design analysis showed that the turbine could operate down to 88% of the design reduced mass flow rate with a total-to-total efficiency of 80%.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139870158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Design of a 130 MW Axial Turbine Operating with a Supercritical Carbon Dioxide Mixture for the SCARABEUS Project 为 SCARABEUS 项目设计使用超临界二氧化碳混合物的 130 兆瓦轴流式涡轮机
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2024-02-02 DOI: 10.3390/ijtpp9010005
Abdelrahman S. Abdeldayem, Salma I. Salah, O. Aqel, M. White, A. Sayma
{"title":"Design of a 130 MW Axial Turbine Operating with a Supercritical Carbon Dioxide Mixture for the SCARABEUS Project","authors":"Abdelrahman S. Abdeldayem, Salma I. Salah, O. Aqel, M. White, A. Sayma","doi":"10.3390/ijtpp9010005","DOIUrl":"https://doi.org/10.3390/ijtpp9010005","url":null,"abstract":"Supercritical carbon dioxide (sCO2) can be mixed with dopants such as titanium tetrachloride (TiCl4), hexafluoro-benzene (C6F6), and sulphur dioxide (SO2) to raise the critical temperature of the working fluid, allowing it to condense at ambient temperatures in dry solar field locations. The resulting transcritical power cycles have lower compression work and higher thermal efficiency. This paper presents the aerodynamic flow path design of a utility-scale axial turbine operating with an 80–20% molar mix of CO2 and SO2. The preliminary design is obtained using a mean line turbine design method based on the Aungier loss model, which considers both mechanical and rotor dynamic criteria. Furthermore, steady-state 3D computational fluid dynamic (CFD) simulations are set up using the k-ω SST turbulence model, and blade shape optimisation is carried out to improve the preliminary design while maintaining acceptable stress levels. It was found that increasing the number of stages from 4 to 14 increased the total-to-total efficiency by 6.3% due to the higher blade aspect ratio, which reduced the influence of secondary flow losses, as well as the smaller tip diameter, which minimised the tip clearance losses. The final turbine design had a total-to-total efficiency of 92.9%, as predicted by the CFD results, with a maximum stress of less than 260 MPa and a mass flow rate within 1% of the intended cycle’s mass flow rate. Optimum aerodynamic performance was achieved with a 14-stage design where the hub radius and the flow path length are 310 mm and 1800 mm, respectively. Off-design analysis showed that the turbine could operate down to 88% of the design reduced mass flow rate with a total-to-total efficiency of 80%.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139810487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信