IEEE Transactions on Molecular, Biological, and Multi-Scale Communications最新文献

筛选
英文 中文
Guest Editorial Understanding Communicable Diseases Through the Lens of Molecular Communications 从分子通讯的角度理解传染病
IF 2.3
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2025-09-11 DOI: 10.1109/TMBMC.2025.3601681
Prabhat Kumar Sharma;Mauro Femminella;Sudhir Kumar
{"title":"Guest Editorial Understanding Communicable Diseases Through the Lens of Molecular Communications","authors":"Prabhat Kumar Sharma;Mauro Femminella;Sudhir Kumar","doi":"10.1109/TMBMC.2025.3601681","DOIUrl":"https://doi.org/10.1109/TMBMC.2025.3601681","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 3","pages":"332-334"},"PeriodicalIF":2.3,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11159554","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145036901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Communications Society Information IEEE通信学会信息
IF 2.3
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2025-09-11 DOI: 10.1109/TMBMC.2025.3601476
{"title":"IEEE Communications Society Information","authors":"","doi":"10.1109/TMBMC.2025.3601476","DOIUrl":"https://doi.org/10.1109/TMBMC.2025.3601476","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 3","pages":"C3-C3"},"PeriodicalIF":2.3,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11159540","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145036931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kelly Bets and Single-Letter Codes: Optimal Information Processing in Natural Systems 凯利投注和单字母代码:自然系统中的最优信息处理
IF 2.3
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2025-06-19 DOI: 10.1109/TMBMC.2025.3581468
Alexander S. Moffett;Andrew W. Eckford
{"title":"Kelly Bets and Single-Letter Codes: Optimal Information Processing in Natural Systems","authors":"Alexander S. Moffett;Andrew W. Eckford","doi":"10.1109/TMBMC.2025.3581468","DOIUrl":"https://doi.org/10.1109/TMBMC.2025.3581468","url":null,"abstract":"In an information-processing investment game, such as the growth of a population of organisms in a changing environment, Kelly betting maximizes the expected log rate of growth. In this paper, we show that Kelly bets are closely related to optimal single-letter codes (i.e., they can achieve the rate-distortion bound with equality). Thus, natural information processing systems with limited computational resources can achieve information-theoretically optimal performance. We show that the rate-distortion tradeoff for an investment game has a simple linear bound, and that the bound is achievable at the point where the corresponding single-letter code is optimal. This interpretation has two interesting consequences. First, we show that increasing the organism’s portfolio of potential strategies can lead to optimal performance over a continuous range of channels, even if the strategy portfolio is fixed. Second, we show that increasing an organism’s number of phenotypes (i.e., its number of possible behaviours in response to the environment) can lead to higher growth rate, and we give conditions under which this occurs. Examples illustrating the results in simplified biological scenarios are presented.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 3","pages":"418-434"},"PeriodicalIF":2.3,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145036902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ART-Rx: A Proportional-Integral-Derivative (PID) Controlled Adaptive Real-Time Threshold Receiver for Molecular Communication ART-Rx:一种比例-积分-导数(PID)控制的分子通信自适应实时阈值接收器
IF 2.3
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2025-06-19 DOI: 10.1109/TMBMC.2025.3581470
Hongbin Ni;Ozgur B. Akan
{"title":"ART-Rx: A Proportional-Integral-Derivative (PID) Controlled Adaptive Real-Time Threshold Receiver for Molecular Communication","authors":"Hongbin Ni;Ozgur B. Akan","doi":"10.1109/TMBMC.2025.3581470","DOIUrl":"https://doi.org/10.1109/TMBMC.2025.3581470","url":null,"abstract":"Signal detection in diffusion-based molecular communication (MC) is challenged by stochastic propagation, inter-symbol interference (ISI), and rapidly varying microfluidic channels. This paper presents ART-Rx, an adaptive real-time threshold receiver that embeds a proportional–integral–derivative (PID) controller in a conceptual system-on-chip with the detection threshold updated once per symbol interval. Extensive Smoldyn and MATLAB simulations sweep the interferer molecule count, concentration-shift keying (CSK) levels, flow velocity, transmitter–receiver (Tx–Rx) distance, diffusion coefficient, and receptor binding rate. Averaged over the interferer molecule sweep, ART-Rx achieves a mean bit-error ratio (BER) of <inline-formula> <tex-math>$1.8times 10^{-2}$ </tex-math></inline-formula>. Across −4 dB ≤ SNR ≤ 19 dB the BER remains below <inline-formula> <tex-math>$6.0times 10^{-2}$ </tex-math></inline-formula>, and never exceeds <inline-formula> <tex-math>$7.4times 10^{-2}$ </tex-math></inline-formula> for Tx–Rx distances up to <inline-formula> <tex-math>$1times 10^{-2},mathrm {m}$ </tex-math></inline-formula>. The closed-loop strategy outperforms a statistical fixed-threshold detector and achieves a <inline-formula> <tex-math>$2.6times $ </tex-math></inline-formula> lower BER than a prior non-machine learning (ML) baseline while retaining <inline-formula> <tex-math>$mathcal {O}(1)$ </tex-math></inline-formula> operations per symbol. Gain scheduling, coupled with Ziegler—Nichols (Z–N) tuned PID gains and an integral windup clamp, preserves stability across strongly non-linear parameter regimes. These results position ART-Rx as a practical Rx front-end for small, resource-constrained Internet of Bio-Nano Things (IoBNT) nodes and implantable biosensors.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 3","pages":"435-450"},"PeriodicalIF":2.3,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145036855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Communication System Design Using Synthetic Photoisomerizable Azobenzene-Regulated K+ (SPARK) Channel 合成光异构偶氮苯调节K+ (SPARK)通道通信系统设计
IF 2.3
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2025-06-13 DOI: 10.1109/TMBMC.2025.3579530
Taha Sajjad;Andrew W. Eckford
{"title":"Communication System Design Using Synthetic Photoisomerizable Azobenzene-Regulated K+ (SPARK) Channel","authors":"Taha Sajjad;Andrew W. Eckford","doi":"10.1109/TMBMC.2025.3579530","DOIUrl":"https://doi.org/10.1109/TMBMC.2025.3579530","url":null,"abstract":"Biomolecules exhibit a remarkable property of transforming signals from their environment. This paper presents a communication system design using a light-modulated protein channel: Synthetic Photoisomerizable Azobenzene-regulated K+ (SPARK). Our approach involves a comprehensive design incorporating the SPARK-based receiver, encoding methods, modulation techniques, and detection processes. By analyzing the resulting communication system, we determine how different parameters influence its performance. Furthermore, we explore the potential design in terms of bioengineering and demonstrate that the data rate scales up with the number of receptors, indicating the possibility of achieving high-speed communication.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 3","pages":"451-461"},"PeriodicalIF":2.3,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145036900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Communications Society Information IEEE通信学会信息
IF 2.4
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2025-06-12 DOI: 10.1109/TMBMC.2025.3574832
{"title":"IEEE Communications Society Information","authors":"","doi":"10.1109/TMBMC.2025.3574832","DOIUrl":"https://doi.org/10.1109/TMBMC.2025.3574832","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 2","pages":"C3-C3"},"PeriodicalIF":2.4,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11033153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144272804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Feature: 15th EAI International Conference on Bio-Inspired Information and Communications Technologies and 1st Asia–Pacific Workshop on Molecular Communications 特辑:第十五届EAI生物信息与通信技术国际会议暨第一届亚太分子通信研讨会
IF 2.4
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2025-06-12 DOI: 10.1109/TMBMC.2025.3574834
Yifan Chen
{"title":"Special Feature: 15th EAI International Conference on Bio-Inspired Information and Communications Technologies and 1st Asia–Pacific Workshop on Molecular Communications","authors":"Yifan Chen","doi":"10.1109/TMBMC.2025.3574834","DOIUrl":"https://doi.org/10.1109/TMBMC.2025.3574834","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 2","pages":"234-236"},"PeriodicalIF":2.4,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11033161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144272915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information IEEE分子、生物和多尺度通信通讯学报
IF 2.4
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2025-06-12 DOI: 10.1109/TMBMC.2025.3574830
{"title":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information","authors":"","doi":"10.1109/TMBMC.2025.3574830","DOIUrl":"https://doi.org/10.1109/TMBMC.2025.3574830","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 2","pages":"C2-C2"},"PeriodicalIF":2.4,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11033151","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144272953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensing Cyclic Adenosine Monophosphate and Guanine Nucleotide Exchange Factor Communication Through Rluc-Epac-Citrine2 BRET Sensor in Live GBM Cells 通过Rluc-Epac-Citrine2 BRET传感器感知活GBM细胞中环腺苷单磷酸和鸟嘌呤核苷酸交换因子的通讯
IF 2.3
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2025-04-29 DOI: 10.1109/TMBMC.2025.3565137
Elif Dilek;Vivash Naidoo;Bobin George Abraham;Saravanan Konda Mani;Kasim S. Abass;Sandhanasamy Devanesan;Mohamad S. AlSalhi;Sureka Chandrabose;Olli Yli-Harja;Akshaya Murugesan;Meenakshisundaram Kandhavelu
{"title":"Sensing Cyclic Adenosine Monophosphate and Guanine Nucleotide Exchange Factor Communication Through Rluc-Epac-Citrine2 BRET Sensor in Live GBM Cells","authors":"Elif Dilek;Vivash Naidoo;Bobin George Abraham;Saravanan Konda Mani;Kasim S. Abass;Sandhanasamy Devanesan;Mohamad S. AlSalhi;Sureka Chandrabose;Olli Yli-Harja;Akshaya Murugesan;Meenakshisundaram Kandhavelu","doi":"10.1109/TMBMC.2025.3565137","DOIUrl":"https://doi.org/10.1109/TMBMC.2025.3565137","url":null,"abstract":"Cyclic adenosine 3’,5’-monophosphate (cAMP) is a versatile secondary messenger that communicates with Guanine Nucleotide Exchange Factor (EPAC) to transfer cellular signaling and regulates numerous physiological conditions. Early studies focused on measuring this communication is considered as crucial in GPCR ligand-mediated EPAC activation, where bioluminescence resonance energy transfer (BRET) sensor has been widely used to study the cAMP level in living cells. However, a BRET sensor pairing with the best brightness and photostability for detecting low levels of cAMP in single and whole-cell populations has yet to be developed. Here, we constructed a novel BRET-based cAMP biosensor with Rluc-Epac-Citrine2. A molecular communication study revealed a significant change of over 100° in the phi value for the residues Thr253, Val259, and Thr260 in the presence of cAMP, leading to strong cAMP-Epac-induced dynamics in the ternary complex. Spectrum scanning, luminescence, and fluorescence emission studies on glioblastoma multiforme (GBM) cells demonstrated closer proximity between donor and acceptor, ensuring the cAMP sensor’s activity. This sensor detects changes in endogenous cAMP levels, and the observed BRET signal can be enhanced by increasing the concentration of the substrate, coelenterazine. The sensor also efficiently detects the communication between cAMP and EPAC in live GBM cells over time. We used this sensor to assess the activation of GPR17, a potential biomarker for GBM. The activation of MDL 29,951, a GPR17 agonist, supports the sensor’s ability to detect Gi-coupled protein activation. This study also shows the feasibility of sensor readouts using inexpensive instrumentation such as plate readers and image systems. Overall, this study sheds new light on detecting cAMP communication with EPAC and GPR17 ligand-mediated EPAC in GBM cells, potentially aiding the development of precision therapies.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 3","pages":"395-404"},"PeriodicalIF":2.3,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980078","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145036804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Channel Characteristics of Multi-Hop FRET-Based Molecular Communication 基于多跳fret的分子通信信道特性研究
IF 2.3
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2025-04-21 DOI: 10.1109/TMBMC.2025.3562765
Tho Minh Duong;Sungoh Kwon
{"title":"Channel Characteristics of Multi-Hop FRET-Based Molecular Communication","authors":"Tho Minh Duong;Sungoh Kwon","doi":"10.1109/TMBMC.2025.3562765","DOIUrl":"https://doi.org/10.1109/TMBMC.2025.3562765","url":null,"abstract":"In this paper, we propose an analysis of the transmission success probability in a Förster resonance energy transfer (FRET)-based molecular communication system. FRET is an energy transmission process between molecules in close proximity without radiation of a photon. Since FRET has low dependency on environmental factors and a relatively wide transmission range, it has become a promising means of propagation in molecular communication. However, the limited availability of current research in the literature hampers comprehensive understanding of FRET capabilities in the context of wireless communication in general and molecular communication specifically. In this paper, we model a FRET-based communication system with relays and analyze its channel characteristics. We derive a theoretical expression for the successful transmission probability of the system under on-off keying modulation and the corresponding system capacity. Our analysis shows that performance of the proposed FRET system is influenced by parameters that include the FRET rate, the intrinsic fluorescence rate, and symbol duration. Furthermore, our analysis maintains a high level of accuracy, regardless of whether the relays share the same FRET rate or possess different FRET rates. Via simulations our analysis is verified in various environments.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 3","pages":"371-383"},"PeriodicalIF":2.3,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145036928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信