{"title":"合成光异构偶氮苯调节K+ (SPARK)通道通信系统设计","authors":"Taha Sajjad;Andrew W. Eckford","doi":"10.1109/TMBMC.2025.3579530","DOIUrl":null,"url":null,"abstract":"Biomolecules exhibit a remarkable property of transforming signals from their environment. This paper presents a communication system design using a light-modulated protein channel: Synthetic Photoisomerizable Azobenzene-regulated K+ (SPARK). Our approach involves a comprehensive design incorporating the SPARK-based receiver, encoding methods, modulation techniques, and detection processes. By analyzing the resulting communication system, we determine how different parameters influence its performance. Furthermore, we explore the potential design in terms of bioengineering and demonstrate that the data rate scales up with the number of receptors, indicating the possibility of achieving high-speed communication.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 3","pages":"451-461"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Communication System Design Using Synthetic Photoisomerizable Azobenzene-Regulated K+ (SPARK) Channel\",\"authors\":\"Taha Sajjad;Andrew W. Eckford\",\"doi\":\"10.1109/TMBMC.2025.3579530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomolecules exhibit a remarkable property of transforming signals from their environment. This paper presents a communication system design using a light-modulated protein channel: Synthetic Photoisomerizable Azobenzene-regulated K+ (SPARK). Our approach involves a comprehensive design incorporating the SPARK-based receiver, encoding methods, modulation techniques, and detection processes. By analyzing the resulting communication system, we determine how different parameters influence its performance. Furthermore, we explore the potential design in terms of bioengineering and demonstrate that the data rate scales up with the number of receptors, indicating the possibility of achieving high-speed communication.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":\"11 3\",\"pages\":\"451-461\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11036327/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11036327/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Communication System Design Using Synthetic Photoisomerizable Azobenzene-Regulated K+ (SPARK) Channel
Biomolecules exhibit a remarkable property of transforming signals from their environment. This paper presents a communication system design using a light-modulated protein channel: Synthetic Photoisomerizable Azobenzene-regulated K+ (SPARK). Our approach involves a comprehensive design incorporating the SPARK-based receiver, encoding methods, modulation techniques, and detection processes. By analyzing the resulting communication system, we determine how different parameters influence its performance. Furthermore, we explore the potential design in terms of bioengineering and demonstrate that the data rate scales up with the number of receptors, indicating the possibility of achieving high-speed communication.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.