{"title":"凯利投注和单字母代码:自然系统中的最优信息处理","authors":"Alexander S. Moffett;Andrew W. Eckford","doi":"10.1109/TMBMC.2025.3581468","DOIUrl":null,"url":null,"abstract":"In an information-processing investment game, such as the growth of a population of organisms in a changing environment, Kelly betting maximizes the expected log rate of growth. In this paper, we show that Kelly bets are closely related to optimal single-letter codes (i.e., they can achieve the rate-distortion bound with equality). Thus, natural information processing systems with limited computational resources can achieve information-theoretically optimal performance. We show that the rate-distortion tradeoff for an investment game has a simple linear bound, and that the bound is achievable at the point where the corresponding single-letter code is optimal. This interpretation has two interesting consequences. First, we show that increasing the organism’s portfolio of potential strategies can lead to optimal performance over a continuous range of channels, even if the strategy portfolio is fixed. Second, we show that increasing an organism’s number of phenotypes (i.e., its number of possible behaviours in response to the environment) can lead to higher growth rate, and we give conditions under which this occurs. Examples illustrating the results in simplified biological scenarios are presented.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 3","pages":"418-434"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kelly Bets and Single-Letter Codes: Optimal Information Processing in Natural Systems\",\"authors\":\"Alexander S. Moffett;Andrew W. Eckford\",\"doi\":\"10.1109/TMBMC.2025.3581468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an information-processing investment game, such as the growth of a population of organisms in a changing environment, Kelly betting maximizes the expected log rate of growth. In this paper, we show that Kelly bets are closely related to optimal single-letter codes (i.e., they can achieve the rate-distortion bound with equality). Thus, natural information processing systems with limited computational resources can achieve information-theoretically optimal performance. We show that the rate-distortion tradeoff for an investment game has a simple linear bound, and that the bound is achievable at the point where the corresponding single-letter code is optimal. This interpretation has two interesting consequences. First, we show that increasing the organism’s portfolio of potential strategies can lead to optimal performance over a continuous range of channels, even if the strategy portfolio is fixed. Second, we show that increasing an organism’s number of phenotypes (i.e., its number of possible behaviours in response to the environment) can lead to higher growth rate, and we give conditions under which this occurs. Examples illustrating the results in simplified biological scenarios are presented.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":\"11 3\",\"pages\":\"418-434\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11045141/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11045141/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Kelly Bets and Single-Letter Codes: Optimal Information Processing in Natural Systems
In an information-processing investment game, such as the growth of a population of organisms in a changing environment, Kelly betting maximizes the expected log rate of growth. In this paper, we show that Kelly bets are closely related to optimal single-letter codes (i.e., they can achieve the rate-distortion bound with equality). Thus, natural information processing systems with limited computational resources can achieve information-theoretically optimal performance. We show that the rate-distortion tradeoff for an investment game has a simple linear bound, and that the bound is achievable at the point where the corresponding single-letter code is optimal. This interpretation has two interesting consequences. First, we show that increasing the organism’s portfolio of potential strategies can lead to optimal performance over a continuous range of channels, even if the strategy portfolio is fixed. Second, we show that increasing an organism’s number of phenotypes (i.e., its number of possible behaviours in response to the environment) can lead to higher growth rate, and we give conditions under which this occurs. Examples illustrating the results in simplified biological scenarios are presented.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.