{"title":"Channel Characteristics of Multi-Hop FRET-Based Molecular Communication","authors":"Tho Minh Duong;Sungoh Kwon","doi":"10.1109/TMBMC.2025.3562765","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an analysis of the transmission success probability in a Förster resonance energy transfer (FRET)-based molecular communication system. FRET is an energy transmission process between molecules in close proximity without radiation of a photon. Since FRET has low dependency on environmental factors and a relatively wide transmission range, it has become a promising means of propagation in molecular communication. However, the limited availability of current research in the literature hampers comprehensive understanding of FRET capabilities in the context of wireless communication in general and molecular communication specifically. In this paper, we model a FRET-based communication system with relays and analyze its channel characteristics. We derive a theoretical expression for the successful transmission probability of the system under on-off keying modulation and the corresponding system capacity. Our analysis shows that performance of the proposed FRET system is influenced by parameters that include the FRET rate, the intrinsic fluorescence rate, and symbol duration. Furthermore, our analysis maintains a high level of accuracy, regardless of whether the relays share the same FRET rate or possess different FRET rates. Via simulations our analysis is verified in various environments.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 3","pages":"371-383"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10970738/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose an analysis of the transmission success probability in a Förster resonance energy transfer (FRET)-based molecular communication system. FRET is an energy transmission process between molecules in close proximity without radiation of a photon. Since FRET has low dependency on environmental factors and a relatively wide transmission range, it has become a promising means of propagation in molecular communication. However, the limited availability of current research in the literature hampers comprehensive understanding of FRET capabilities in the context of wireless communication in general and molecular communication specifically. In this paper, we model a FRET-based communication system with relays and analyze its channel characteristics. We derive a theoretical expression for the successful transmission probability of the system under on-off keying modulation and the corresponding system capacity. Our analysis shows that performance of the proposed FRET system is influenced by parameters that include the FRET rate, the intrinsic fluorescence rate, and symbol duration. Furthermore, our analysis maintains a high level of accuracy, regardless of whether the relays share the same FRET rate or possess different FRET rates. Via simulations our analysis is verified in various environments.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.