ART-Rx: A Proportional-Integral-Derivative (PID) Controlled Adaptive Real-Time Threshold Receiver for Molecular Communication

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongbin Ni;Ozgur B. Akan
{"title":"ART-Rx: A Proportional-Integral-Derivative (PID) Controlled Adaptive Real-Time Threshold Receiver for Molecular Communication","authors":"Hongbin Ni;Ozgur B. Akan","doi":"10.1109/TMBMC.2025.3581470","DOIUrl":null,"url":null,"abstract":"Signal detection in diffusion-based molecular communication (MC) is challenged by stochastic propagation, inter-symbol interference (ISI), and rapidly varying microfluidic channels. This paper presents ART-Rx, an adaptive real-time threshold receiver that embeds a proportional–integral–derivative (PID) controller in a conceptual system-on-chip with the detection threshold updated once per symbol interval. Extensive Smoldyn and MATLAB simulations sweep the interferer molecule count, concentration-shift keying (CSK) levels, flow velocity, transmitter–receiver (Tx–Rx) distance, diffusion coefficient, and receptor binding rate. Averaged over the interferer molecule sweep, ART-Rx achieves a mean bit-error ratio (BER) of <inline-formula> <tex-math>$1.8\\times 10^{-2}$ </tex-math></inline-formula>. Across −4 dB ≤ SNR ≤ 19 dB the BER remains below <inline-formula> <tex-math>$6.0\\times 10^{-2}$ </tex-math></inline-formula>, and never exceeds <inline-formula> <tex-math>$7.4\\times 10^{-2}$ </tex-math></inline-formula> for Tx–Rx distances up to <inline-formula> <tex-math>$1\\times 10^{-2}\\,\\mathrm {m}$ </tex-math></inline-formula>. The closed-loop strategy outperforms a statistical fixed-threshold detector and achieves a <inline-formula> <tex-math>$2.6\\times $ </tex-math></inline-formula> lower BER than a prior non-machine learning (ML) baseline while retaining <inline-formula> <tex-math>$\\mathcal {O}(1)$ </tex-math></inline-formula> operations per symbol. Gain scheduling, coupled with Ziegler—Nichols (Z–N) tuned PID gains and an integral windup clamp, preserves stability across strongly non-linear parameter regimes. These results position ART-Rx as a practical Rx front-end for small, resource-constrained Internet of Bio-Nano Things (IoBNT) nodes and implantable biosensors.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 3","pages":"435-450"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11045171/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Signal detection in diffusion-based molecular communication (MC) is challenged by stochastic propagation, inter-symbol interference (ISI), and rapidly varying microfluidic channels. This paper presents ART-Rx, an adaptive real-time threshold receiver that embeds a proportional–integral–derivative (PID) controller in a conceptual system-on-chip with the detection threshold updated once per symbol interval. Extensive Smoldyn and MATLAB simulations sweep the interferer molecule count, concentration-shift keying (CSK) levels, flow velocity, transmitter–receiver (Tx–Rx) distance, diffusion coefficient, and receptor binding rate. Averaged over the interferer molecule sweep, ART-Rx achieves a mean bit-error ratio (BER) of $1.8\times 10^{-2}$ . Across −4 dB ≤ SNR ≤ 19 dB the BER remains below $6.0\times 10^{-2}$ , and never exceeds $7.4\times 10^{-2}$ for Tx–Rx distances up to $1\times 10^{-2}\,\mathrm {m}$ . The closed-loop strategy outperforms a statistical fixed-threshold detector and achieves a $2.6\times $ lower BER than a prior non-machine learning (ML) baseline while retaining $\mathcal {O}(1)$ operations per symbol. Gain scheduling, coupled with Ziegler—Nichols (Z–N) tuned PID gains and an integral windup clamp, preserves stability across strongly non-linear parameter regimes. These results position ART-Rx as a practical Rx front-end for small, resource-constrained Internet of Bio-Nano Things (IoBNT) nodes and implantable biosensors.
ART-Rx:一种比例-积分-导数(PID)控制的分子通信自适应实时阈值接收器
基于扩散的分子通信(MC)中的信号检测受到随机传播、符号间干扰(ISI)和快速变化的微流体通道的挑战。本文介绍了ART-Rx,一种自适应实时阈值接收器,它在概念片上系统中嵌入了比例积分导数(PID)控制器,检测阈值每符号间隔更新一次。广泛的Smoldyn和MATLAB模拟扫描了干扰分子计数、浓度移位键控(CSK)水平、流速、发射器-接收器(Tx-Rx)距离、扩散系数和受体结合率。在干扰分子扫描的平均值上,ART-Rx的平均误码率(BER)为1.8\乘以10^{-2}$。在- 4 dB≤信噪比≤19 dB的范围内,误码率保持在$6.0\乘以10^{-2}$以下,对于x - rx距离不超过$1\乘以10^ -2}$,\ maththrm {m}$,误码率不超过$7.4\乘以10^ -2}$。闭环策略优于统计固定阈值检测器,并实现比先前的非机器学习(ML)基线低2.6倍的BER,同时保留每个符号$\mathcal {O}(1)$操作。增益调度,加上Ziegler-Nichols (Z-N)调谐PID增益和积分发条钳,在强非线性参数范围内保持稳定性。这些结果使ART-Rx成为小型,资源受限的生物纳米物联网(IoBNT)节点和植入式生物传感器的实用Rx前端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信