IET Smart Grid最新文献

筛选
英文 中文
Variable DC voltage based reactive power enhancement scheme for MMC-STATCOM 基于可变直流电压的 MMC-STATCOM 无功功率增强方案
IF 2.4
IET Smart Grid Pub Date : 2023-12-09 DOI: 10.1049/stg2.12147
Lujie Yu, Guoyan Wang, Tong Wu, Jiebei Zhu, Campbell D. Booth
{"title":"Variable DC voltage based reactive power enhancement scheme for MMC-STATCOM","authors":"Lujie Yu,&nbsp;Guoyan Wang,&nbsp;Tong Wu,&nbsp;Jiebei Zhu,&nbsp;Campbell D. Booth","doi":"10.1049/stg2.12147","DOIUrl":"10.1049/stg2.12147","url":null,"abstract":"<p>Constrained by the AC voltage amplitude modulated by a modular multilevel converter-based static synchronous compensator (MMC-STATCOM), its reactive power output may be subject to oscillations under grid contingencies, posing a threat to the grid stable operation. To solve this problem, this paper proposes a variable DC voltage (VDCV)-based reactive power enhancement scheme for MMC-STATCOM. In this scheme, a novel variable DC voltage control is designed, which can increase the DC voltage in a transient state for relaxing the constraint of the AC voltage amplitude modulated by MMC-STATCOM and improving its reactive power output capability (RPC). At the same time, to make full use of the improved RPC of MMC-STATCOM, a VDCV scheme also proposes an optimisation algorithm of its reactive current-AC voltage droop coefficient using the established reactive power model of the MMC-STATCOM. Based on small signal modelling and analysis, the key parameters of the proposed VDCV scheme are optimised. The performance and reactive power enhancement of the VDCV scheme is evaluated through the hardware-in-the-loop experiment under grid disturbances.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"7 4","pages":"427-441"},"PeriodicalIF":2.4,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138585986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel snow conditions-compatible computational intelligence-based PV power forecasting approach for microgrids in snow prone regions 基于计算智能的新型雪况兼容光伏功率预测方法,适用于多雪地区的微电网
IF 2.3
IET Smart Grid Pub Date : 2023-12-08 DOI: 10.1049/stg2.12146
Behzad Hashemi, Shamsodin Taheri, Ana-Maria Cretu
{"title":"A novel snow conditions-compatible computational intelligence-based PV power forecasting approach for microgrids in snow prone regions","authors":"Behzad Hashemi,&nbsp;Shamsodin Taheri,&nbsp;Ana-Maria Cretu","doi":"10.1049/stg2.12146","DOIUrl":"10.1049/stg2.12146","url":null,"abstract":"<p>Energy management in a renewable energy-based microgrid has a key role in improving energy utilisation and reducing the microgrid operation cost. The optimal energy management strategy can be significantly affected by the intermittency of renewable energies and also harsh weather conditions. In this study, a novel snow conditions-compatible computational intelligence-based short-term photovoltaic (PV) power forecasting (PVPF) approach is proposed that is independent of exogenous weather forecasts. The proposed approach consists of a snow cover detection stage, a snow cover forecasting stage, and a PV power forecasting stage. This approach is then validated for a model predictive control (MPC)-based energy management system (EMS) of a PV energy-based grid-connected microgrid located in a snow-prone area. The PVPF method together with a computational intelligence-based short-term load demand forecasting model constitutes the forecasting block of the EMS. The forecasting block generates day-ahead hourly forecasts based on the local measurements of the meteorological-electrical parameters and sends them to the optimisation block where a two-stage control method, corresponding to the tertiary and secondary control levels, is developed based on mixed-integer linear and quadratic programming. The developed EMS is applied to a test microgrid simulated in MATLAB/Simulink and compared with a heuristic control method. The results show that the proposed approach can reduce the overall operation cost of the microgrid by 8% (24$), 15% (166$), and 13% (235$) on sunny, cloudy, and snowy days under study, respectively, compared to the heuristic controller.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"7 3","pages":"221-240"},"PeriodicalIF":2.3,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12146","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138587208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel hybrid centralised decentralised framework for electric vehicles coordination 用于电动汽车协调的新型混合集中式分散框架
IF 2.3
IET Smart Grid Pub Date : 2023-12-04 DOI: 10.1049/stg2.12144
Praveen Verma, Pallab Dasgupta, Chandan Chakraborty
{"title":"A novel hybrid centralised decentralised framework for electric vehicles coordination","authors":"Praveen Verma,&nbsp;Pallab Dasgupta,&nbsp;Chandan Chakraborty","doi":"10.1049/stg2.12144","DOIUrl":"10.1049/stg2.12144","url":null,"abstract":"<p>Hybrid Centralised-Decentralised Electric Vehicle (EV) coordination policy in the urgent charging scenario is presented. First, a robust and complex optimisation problem considering several key features affecting EV coordination is formulated. Then, a solution strategy for the formulated problem is proposed by decomposing the formulated problem into an EV coordination and simple optimisation problem. The decentralised rule-based EV coordination strategy works on the principle of direct load flattening and utilises practical EV aggregator-customer interaction, customer behaviour, and temporospatial shifting of the EVs to flatten the load duration curve at the charging station. Then, the centralised optimisation problem is solved to minimise the operation cost, decrease the power loss, and decrease congestion in the grid. A comparison between uncoordinated and coordinated charging in the case study conducted on the IEEE 24 bus system shows that the proposed approach reduces the average EV load by 1283.26 kW/min, average power loss by 2.465 kW/min, and operation cost by 61.99 $/min during the peak hours.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"7 1","pages":"89-100"},"PeriodicalIF":2.3,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12144","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138603889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virtual-physical power flow method for cyber-physical power system contingency and vulnerability assessment 用于网络物理电力系统突发事件和脆弱性评估的虚拟物理电力流方法
IF 2.3
IET Smart Grid Pub Date : 2023-11-28 DOI: 10.1049/stg2.12143
Dongmeng Qiu, Rui Zhang, Zhuoran Zhou, Jinning Zhang, Xin Zhang
{"title":"Virtual-physical power flow method for cyber-physical power system contingency and vulnerability assessment","authors":"Dongmeng Qiu,&nbsp;Rui Zhang,&nbsp;Zhuoran Zhou,&nbsp;Jinning Zhang,&nbsp;Xin Zhang","doi":"10.1049/stg2.12143","DOIUrl":"10.1049/stg2.12143","url":null,"abstract":"<p>Traditional power systems have evolved into cyber-physical power systems (CPPS) with the integration of information and communication technologies. CPPS can be considered as a typical hierarchical control system that can be divided into two parts: the power grid and the communication network. CPPS will face new vulnerabilities which can have network contingencies and cascading consequences. To address this challenge, a virtual-physical power flow (VPPF) method is proposed for the vulnerability assessment of CPPS. The proposed method contains dual power flows, one is to simulate a virtual power flow from decision-making units, and the other is to simulate a physical power flow. In addition, a novel hierarchical control model is proposed that includes four layers of CPPS: the physical layer, the secondary device layer, the regional control layer, and the national control layer. The model is based on IEEE test cases using data and structures provided by MATPOWER. Denial-of-service (DoS) and false data injection (FDI) are simulated as two major cyber-attacks in CPPS. A novel vulnerability index is proposed that consists of system voltage, network latency, and node betweenness as three key indicators. This is a comprehensive and adaptive index because it encompasses both cyber and physical system characteristics and can be applied to several types of cyber-attacks. The results of the vulnerability assessment are compared in national and regional control structures of CPPS to evaluate the vulnerability of cyber-physical nodes.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"7 1","pages":"13-27"},"PeriodicalIF":2.3,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12143","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139224137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal false data injection attack and detection on cyber-physical power system based on deep reinforcement learning 基于深度强化学习的网络物理电力系统时态错误数据注入攻击与检测
IF 2.3
IET Smart Grid Pub Date : 2023-11-14 DOI: 10.1049/stg2.12141
Wei Fu, Yunqi Yan, Ying Chen, Zhisheng Wang, Danlong Zhu, Longxing Jin
{"title":"Temporal false data injection attack and detection on cyber-physical power system based on deep reinforcement learning","authors":"Wei Fu,&nbsp;Yunqi Yan,&nbsp;Ying Chen,&nbsp;Zhisheng Wang,&nbsp;Danlong Zhu,&nbsp;Longxing Jin","doi":"10.1049/stg2.12141","DOIUrl":"10.1049/stg2.12141","url":null,"abstract":"<p>False data injection (FDI) attacks are serious threats to a cyber-physical power system (CPPS), which may be launched by a malicious software or virus accessing only the measurements from one substation. This study proposes a novel attack method named the temporal FDI (TFDI) attack. Namely, the virus makes decisions based on temporal observations of the CPPS, and the attack is driven by a deep Q network (DQN) algorithm. As DQN takes vectors of continuous variables as input states, the proposed method is free of the state space explosion problem, which helps the virus to learn the optimal attack strategy efficiently. Moreover, for adopting time-series measurements as quasi-dynamic observations, long short-term memory cells are employed as a layer of the Q network. The TFDI attack enables the virus to discern trends of load variations and enhance the attack’s effectiveness. Meanwhile, a countermeasure is also presented to detect the proposed FDI attack. Binary classifiers are trained for each bus to detect suspicious local measurements according to their deviations from system-state manifolds. When suspicious measurements are spotted frequently, the corresponding bus is believed to be under FDI attacks. Test cases validate the efficacy of the proposed FDI attack method as well as its countermeasure.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"7 1","pages":"78-88"},"PeriodicalIF":2.3,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12141","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134953806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frequency control by BESS for smooth Island transition of a hydro-powered microgrid 利用 BESS 进行频率控制,实现水力发电微电网的平稳岛过渡
IF 2.3
IET Smart Grid Pub Date : 2023-11-10 DOI: 10.1049/stg2.12140
Ahmed Sunjaq, Peiyuan Chen, Massimo Bongiorno, Ritwik Majumder, Jan R. Svensson
{"title":"Frequency control by BESS for smooth Island transition of a hydro-powered microgrid","authors":"Ahmed Sunjaq,&nbsp;Peiyuan Chen,&nbsp;Massimo Bongiorno,&nbsp;Ritwik Majumder,&nbsp;Jan R. Svensson","doi":"10.1049/stg2.12140","DOIUrl":"10.1049/stg2.12140","url":null,"abstract":"<p>This paper develops a frequency control strategy for a battery energy storage system to facilitate the smooth island transition of a hydro-powered microgrid during unplanned grid outages. The proposed frequency control strategy uses a PI-based droop controller, where the tuning of the controller accounts for the limitations in the power response of a hydro generator and the required frequency quality of the microgrid. The effectiveness of the frequency control strategy is verified in Simulink using phasor simulations, and it is further validated in laboratory tests. The results demonstrate that the proposed PI-based droop and its tuning strategy fulfill the desired frequency quality requirement of the hydro-powered microgrid without over-dimensioning the size of the storage capacity as compared to the traditional proportional droop controller.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"7 1","pages":"63-77"},"PeriodicalIF":2.3,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12140","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal planning of mobile energy storage in active distribution network 主动配电网中移动储能的优化规划
IF 2.3
IET Smart Grid Pub Date : 2023-11-05 DOI: 10.1049/stg2.12139
Shiwei Xia, Zizheng Wang, Xiang Gao, Wenpei Li
{"title":"Optimal planning of mobile energy storage in active distribution network","authors":"Shiwei Xia,&nbsp;Zizheng Wang,&nbsp;Xiang Gao,&nbsp;Wenpei Li","doi":"10.1049/stg2.12139","DOIUrl":"10.1049/stg2.12139","url":null,"abstract":"<p>Mobile energy storage (MES) has the flexibility to temporally and spatially shift energy, and the optimal configuration of MES shall significantly improve the active distribution network (ADN) operation economy and renewables consumption. In this study, an optimal planning model of MES is established for ADN with a goal of minimising the annual cost of a distribution system. Firstly, the annual cost of a distribution system is set up with consideration of the investment cost and operation cost of MES, wind and PV curtailment cost, network loss cost and the peak-valley arbitrage income of MES. Then, the distributed photovoltaic and wind power access constraints, power conservation constraints of ADN, power generation constraint, system security constraint, energy coupling and displacement constraints of MES are further tailored to establish the MES planning model. Afterwards, the proposed model is solved by the second-order cone relaxation combined with the large <i>M</i> algorithm. Finally, the simulation results of the modified IEEE 33-bus distribution network validate the effectiveness of the proposed model.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"7 1","pages":"1-12"},"PeriodicalIF":2.3,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12139","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135726656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal output-constrained control of medium-voltage DC shipboard power systems for pulsed power load accommodation 中压直流船载电力系统脉冲功率负载优化控制
IF 2.3
IET Smart Grid Pub Date : 2023-10-30 DOI: 10.1049/stg2.12138
Zhenghong Tu, Jiangkai Peng, Bo Fan, Liming Liu, Wenxin Liu
{"title":"Optimal output-constrained control of medium-voltage DC shipboard power systems for pulsed power load accommodation","authors":"Zhenghong Tu,&nbsp;Jiangkai Peng,&nbsp;Bo Fan,&nbsp;Liming Liu,&nbsp;Wenxin Liu","doi":"10.1049/stg2.12138","DOIUrl":"10.1049/stg2.12138","url":null,"abstract":"<p>For pulsed power load (PPL) accommodation in a medium-voltage DC (MVDC) shipboard power system (SPS), the charging control of energy storage systems (ESSs) and the generation control of distributed generators (DGs) need to be properly coordinated. Targeting the important but not well-studied problem, an optimal output-constrained control algorithm for the offline PPL accommodation strategy is presented. Three control objectives including realising the generation and charging control references, maintaining the DC bus and supercapacitor voltages within the safe operating ranges, and minimising the total generation cost of DGs, are fulfilled concurrently. First, an SPS model with multiple DGs, a supercapacitor ESS, and regular loads is developed. By restricting the DC bus and supercapacitor voltages within pre-defined constraints, both the transient- and steady-state performances of the SPS are guaranteed. Furthermore, by incorporating the cost minimisation objective into designed virtual control signals, the third control objective on energy efficiency is realised. The stability of the presented algorithm is rigorously proven based on the Lyapunov method. Finally, detailed case studies are conducted to validate the performance of the designed algorithm.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"7 1","pages":"51-62"},"PeriodicalIF":2.3,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12138","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136069706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secondary control with reduced communication requirements for accurate reactive power sharing in AC microgrids 减少通信要求的二次控制,实现交流微电网中精确的无功功率共享
IF 2.3
IET Smart Grid Pub Date : 2023-10-25 DOI: 10.1049/stg2.12127
Mehdi Baharizadeh, Mohammad Sadegh Golsorkhi, Mehdi Savaghebi
{"title":"Secondary control with reduced communication requirements for accurate reactive power sharing in AC microgrids","authors":"Mehdi Baharizadeh,&nbsp;Mohammad Sadegh Golsorkhi,&nbsp;Mehdi Savaghebi","doi":"10.1049/stg2.12127","DOIUrl":"10.1049/stg2.12127","url":null,"abstract":"<p>A secondary control method is proposed for accurate reactive power sharing as well as frequency and voltage restoration in islanded AC microgrids (MGs). The proposed method consists of an MG secondary controller, local secondary controllers for distributed energy resources (DERs), and a low-bandwidth communication link for broadcasting common data from the MG secondary controller to DERs. The broadcasted data includes the MG point of common coupling voltage magnitude and a common vertical shift for frequency and voltage restoration. Local secondary controllers calculate specific shifts for the <i>Q-V</i> droop characteristic of each dispatchable DER and the <i>V-Q</i> reverse droop characteristic of each photovoltaic (PV) system, aligning their operating points with the <i>Q-V</i><sub><i>PCC</i></sub> and <i>V</i><sub><i>PCC</i></sub><i>-Q</i> droop characteristics, respectively. By employing <i>V</i><sub><i>PCC</i></sub> as a common global variable, coordination of reactive power generation of all dispatchable DERs and PV systems is achieved, enabling accurate reactive power sharing. Importantly, in the proposed scheme, the required communication bandwidth and the communication burden are minor and are not increased with the number of DERs. Additionally, the DERs are relieved of the need for data transmission capability. The small signal stability of the proposed method is examined and its effectiveness is validated through Hardware-in-the-Loop (HIL) experimental results.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"6 6","pages":"638-652"},"PeriodicalIF":2.3,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12127","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135168265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Privacy-preserving peak time forecasting with Learning to Rank XGBoost and extensive feature engineering 利用 "学习排名 XGBoost "和广泛的特征工程进行保护隐私的高峰时间预测
IF 2.3
IET Smart Grid Pub Date : 2023-10-22 DOI: 10.1049/stg2.12137
Leo Semmelmann, Oliver Resch, Sarah Henni, Christof Weinhardt
{"title":"Privacy-preserving peak time forecasting with Learning to Rank XGBoost and extensive feature engineering","authors":"Leo Semmelmann,&nbsp;Oliver Resch,&nbsp;Sarah Henni,&nbsp;Christof Weinhardt","doi":"10.1049/stg2.12137","DOIUrl":"10.1049/stg2.12137","url":null,"abstract":"<p>In modern power systems, predicting the time when peak loads will occur is crucial for improving efficiency and minimising the possibility of network sections becoming overloaded. However, most works in the load forecasting field are not focusing on a dedicated peak time forecast and are not dealing with load data privacy. At the same time, developing methods for forecasting peak electricity usage that protect customers' data privacy is essential since it could encourage customers to share their energy usage data, leading to more data points for the effective management and planning of power grids. Hence, the authors employ a dedicated Learning to Rank XGBoost algorithm to forecast peak times with only ranks of loads instead of absolute load magnitudes as input data, thereby offering potential privacy-preserving properties. We show that the presented Learning to Rank XGBoost model yields comparable results to a benchmark XGBoost load forecasting model. Additionally, we describe our extensive feature engineering process and a state-of-the-art Bayesian hyperparameter optimisation for selecting model parameters, which leads to a significant improvement of forecasting accuracy. Our method was used in the context of the final round of the international BigDEAL load forecasting challenge 2022, where we consistently achieved high-ranking results in the peak time track and an overall fourth rank in the peak load forecasting track with our general XGBoost model.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"7 2","pages":"172-185"},"PeriodicalIF":2.3,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12137","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135462202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信