Machine learning autoencoder-based parameters prediction for solar power generation systems in smart grid

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
IET Smart Grid Pub Date : 2024-01-03 DOI:10.1049/stg2.12153
Ahsan Zafar, Yanbo Che, Muhammad Faheem, Muhammad Abubakar, Shujaat Ali, Muhammad Shoaib Bhutta
{"title":"Machine learning autoencoder-based parameters prediction for solar power generation systems in smart grid","authors":"Ahsan Zafar,&nbsp;Yanbo Che,&nbsp;Muhammad Faheem,&nbsp;Muhammad Abubakar,&nbsp;Shujaat Ali,&nbsp;Muhammad Shoaib Bhutta","doi":"10.1049/stg2.12153","DOIUrl":null,"url":null,"abstract":"<p>During the fourth energy revolution, artificial intelligence implementation is necessary in all fields of technology to meet the increasing energy demands and address the diminishing fossil fuel reserves, necessitating the shift towards smart grids. The authors focus on predicting parameters accurately to minimise loss and improve power generation capacity in smart grids, given that accurate parameter prediction is essential for traditional power grid stations converting to smart grids. The authors employ an artificial intelligence-based machine learning model, namely the long short-term memory, to predict parameters of a solar power plant. After analysing the results obtained from the long short-term memory model in graphical visualisation, the model is further improved using two different techniques namely, a convolutional neural network-long short-term memory and the authors proposed an autoencoder long short-term memory. Comparing the results of these models, the study finds that autoencoder long short-term memory outperforms the convolutional neural network-long short-term memory as well as simple long short-term memory. Thus, the use of artificial intelligence in this study substantially enhances the precision of parameter prediction by augmenting the performance of rudimentary machine learning models, thereby facilitating the attainment of a resilient and resourceful power system that overcomes power losses and ameliorates production capacity in the context of Smart Grids.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"7 3","pages":"328-350"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12153","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

During the fourth energy revolution, artificial intelligence implementation is necessary in all fields of technology to meet the increasing energy demands and address the diminishing fossil fuel reserves, necessitating the shift towards smart grids. The authors focus on predicting parameters accurately to minimise loss and improve power generation capacity in smart grids, given that accurate parameter prediction is essential for traditional power grid stations converting to smart grids. The authors employ an artificial intelligence-based machine learning model, namely the long short-term memory, to predict parameters of a solar power plant. After analysing the results obtained from the long short-term memory model in graphical visualisation, the model is further improved using two different techniques namely, a convolutional neural network-long short-term memory and the authors proposed an autoencoder long short-term memory. Comparing the results of these models, the study finds that autoencoder long short-term memory outperforms the convolutional neural network-long short-term memory as well as simple long short-term memory. Thus, the use of artificial intelligence in this study substantially enhances the precision of parameter prediction by augmenting the performance of rudimentary machine learning models, thereby facilitating the attainment of a resilient and resourceful power system that overcomes power losses and ameliorates production capacity in the context of Smart Grids.

Abstract Image

智能电网中基于机器学习自动编码器的太阳能发电系统参数预测
在第四次能源革命期间,人工智能必须应用于所有技术领域,以满足日益增长的能源需求,解决化石燃料储量不断减少的问题,这就要求向智能电网转变。鉴于准确的参数预测对传统电网站向智能电网的转变至关重要,作者重点研究了如何准确预测参数,以最大限度地减少智能电网中的损耗并提高发电能力。作者采用了一种基于人工智能的机器学习模型,即长短期记忆,来预测太阳能发电站的参数。在对图形可视化长短期记忆模型获得的结果进行分析后,使用两种不同的技术对模型进行了进一步改进,即卷积神经网络长短期记忆和作者提出的自动编码器长短期记忆。对比这些模型的结果,研究发现自动编码器长时短记忆优于卷积神经网络长时短记忆和简单长时短记忆。因此,本研究中人工智能的使用通过增强初级机器学习模型的性能,大大提高了参数预测的精确度,从而有助于在智能电网的背景下建立一个具有弹性和资源丰富的电力系统,克服电力损失并提高生产能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Smart Grid
IET Smart Grid Computer Science-Computer Networks and Communications
CiteScore
6.70
自引率
4.30%
发文量
41
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信