Rachel A. Albert, D. Chan, Dan B. Goldman, J. F. O'Brien
{"title":"Approximate svBRDF Estimation From Mobile Phone Video","authors":"Rachel A. Albert, D. Chan, Dan B. Goldman, J. F. O'Brien","doi":"10.2312/SRE.20181168","DOIUrl":"https://doi.org/10.2312/SRE.20181168","url":null,"abstract":"We describe a new technique for obtaining a spatially varying BRDF (svBRDF) of a flat object using printed fiducial markers and a cell phone capable of continuous flash video. Our homography-based video frame alignment method does not require the fiducial markers to be visible in every frame, thereby enabling us to capture larger areas at a closer distance and higher resolution than in previous work. Pixels in the resulting panorama are fit with a BRDF based on a recursive subdivision algorithm, utilizing all the light and view positions obtained from the video. We show the versatility of our method by capturing a variety of materials with both one and two camera input streams and rendering our results on 3D objects under complex illumination.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128905002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Seemann, Gianpaolo Palma, M. Dellepiane, Paolo Cignoni, M. Goesele
{"title":"Soft Transparency for Point Cloud Rendering","authors":"P. Seemann, Gianpaolo Palma, M. Dellepiane, Paolo Cignoni, M. Goesele","doi":"10.2312/SRE.20181176","DOIUrl":"https://doi.org/10.2312/SRE.20181176","url":null,"abstract":"We propose a novel rendering framework for visualizing point data with complex structures and/or different quality of data. The point cloud can be characterized by setting a per-point scalar field associated to the aspect that differentiates the parts of the dataset (i.e. uncertainty given by local normal variation). Our rendering method uses the scalar field to render points as solid splats or semi-transparent spheres with non-uniform density to produce the final image. To that end, we derive a base model for integrating density in (intersecting) spheres for both the uniform and non-uniform setting and introduce a simple and fast approximation which yields interactive rendering speeds for millions of points. Because our method only relies on the basic OpenGL rasterization pipeline, rendering properties can be adjusted in real-time by user. The method has been tested on several datasets with different characteristics, and user studies show that a clearer understanding of the scene is possible in comparison with point splatting techniques and basic transparency rendering.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130094108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PN-Method for Multiple Scattering in Participating Media","authors":"David Koerner, J. Portsmouth, Wenzel Jakob","doi":"10.2312/sre.20181170","DOIUrl":"https://doi.org/10.2312/sre.20181170","url":null,"abstract":"Rendering highly scattering participating media using brute force path tracing is a challenge. The diffusion approximation reduces the problem to solving a simple linear partial differential equation. Flux-limited diffusion introduces non-linearities to improve the accuracy of the solution, especially in low optical depth media, but introduces several ad-hoc assumptions. Both methods are based on a spherical harmonics expansion of the radiance field that is truncated after the first order. In this paper, we investigate the open question of whether going to higher spherical harmonic orders provides a viable improvement to these two approaches. Increasing the order introduces a set of complex coupled partial differential equations (the $P_N$-equations), whose growing number make them difficult to work with at higher orders. We thus use a computer algebra framework for representing and manipulating the underlying mathematical equations, and use it to derive the real-valued $P_N$-equations for arbitrary orders. We further present a staggered-grid $P_N$-solver and generate its stencil code directly from the expression tree of the $P_N$-equations. Finally, we discuss how our method compares to prior work for various standard problems.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117051893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sebastian Herholz, Oskar Elek, Jens Schindel, Jaroslav Křivánek, H. Lensch
{"title":"A Unified Manifold Framework for Efficient BRDF Sampling based on Parametric Mixture Models","authors":"Sebastian Herholz, Oskar Elek, Jens Schindel, Jaroslav Křivánek, H. Lensch","doi":"10.2312/sre.20181171","DOIUrl":"https://doi.org/10.2312/sre.20181171","url":null,"abstract":"Virtually all existing analytic BRDF models are built from multiple functional components (e.g., Fresnel term, normal distribution function, etc.). This makes accurate importance sampling of the full model challenging, and so current solutions only cover a subset of the model's components. This leads to sub-optimal or even invalid proposed directional samples, which can negatively impact the efficiency of light transport solvers based on Monte Carlo integration. To overcome this problem, we propose a unified BRDF sampling strategy based on parametric mixture models (PMMs). We show that for a given BRDF, the parameters of the associated PMM can be defined in smooth manifold spaces, which can be compactly represented using multivariate B-Splines. These manifolds are defined in the parameter space of the BRDF and allow for arbitrary, continuous queries of the PMM representation for varying BRDF parameters, which further enables importance sampling for spatially varying BRDFs. Our representation is not limited to analytic BRDF models, but can also be used for sampling measured BRDF data. The resulting manifold framework enables accurate and efficient BRDF importance sampling with very small approximation errors.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123696896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Screen Space Approximate Gaussian Hulls","authors":"Julian Meder, B. Brüderlin","doi":"10.2312/sre.20181177","DOIUrl":"https://doi.org/10.2312/sre.20181177","url":null,"abstract":"The Screen Space Approximate Gaussian Hull method presented in this paper is based on an output sensitive, adaptive approach, which addresses the challenge of high quality rendering even for high resolution displays and large numbers of light sources or indirect lighting. Our approach uses dynamically sparse sampling of the light information on a low-resolution mesh approximated from screen space and applying these samples in a deferred shading stage to the full resolution image. This preserves geometric detail unlike common approaches using lower resolution rendering combined with upsampling strategies. The light samples are expressed by spherical Gaussian distribution functions, for which we found a more precise closed form integration compared to existing approaches. Thus, our method does not exhibit the quality degradation shown by previously proposed approaches and we show that the implementation is very efficient. Moreover, being an output sensitive approach, it can be used for massive scene rendering without additional cost.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125959753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. R. A. Chaitanya, Laurent Belcour, T. Hachisuka, Simon Premoze, J. Pantaleoni, D. Nowrouzezahrai
{"title":"Matrix Bidirectional Path Tracing","authors":"C. R. A. Chaitanya, Laurent Belcour, T. Hachisuka, Simon Premoze, J. Pantaleoni, D. Nowrouzezahrai","doi":"10.2312/sre.20181169","DOIUrl":"https://doi.org/10.2312/sre.20181169","url":null,"abstract":"Sampled paths in Monte Carlo ray tracing can be arbitrarily close to each other due to its stochastic nature. Such clumped samples in the path space tend to contribute little toward an accurate estimate of each pixel. Bidirectional light transport methods make this issue further complicated since connecting paths of sampled subpaths can be arbitrarily clumped again. We propose a matrix formulation of bidirectional light transport that enables stratification (and low-discrepancy sampling) in this connection space. This stratification allows us to distribute computation evenly across contributing paths in the image, which is not possible with standard bidirectional or Markov chain solutions. Each element in our matrix formulation represents a pair of connected eye- and light-subpaths. By carefully reordering these elements, we build a 2D space where equally contributing paths are distributed coherently. We devise an unbiased rendering algorithm that leverages this coherence to effectively sample path space, consistently achieving a 2 − 3 x speedup in radiometrically complex scenes compared to the state-of-the-art.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132671337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"k-d Tree Construction Designed for Motion Blur","authors":"Xin Yang, Qi Liu, Baocai Yin, Qiang Zhang, D. Zhou, Xiaopeng Wei","doi":"10.2312/sre.20171200","DOIUrl":"https://doi.org/10.2312/sre.20171200","url":null,"abstract":"We present a k-d tree construction algorithm designed to accelerate rendering of scenes with motion blur, in application scenarios where a k-d tree is either required or desired. Our associated data structure focuses on capturing incoherent motion within the nodes of a k-d tree and improves both data structure quality and efficiency over previous methods. At build-time stage, we tracks primitives with motion that is significantly distinct from other primitives within the node, guarantee valid node references and the correctness of the data structure via primitive duplication heuristic and propagation rules. Our experiments with this hierarchy show artifact-free motion-blur rendering using a k-d tree, and demonstrate improvements against a traditional BVH with interpolation and a MSBVH structure designed to handle moving primitives, particularly in render time.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129299105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renaud Adrien Dubouchet, Laurent Belcour, D. Nowrouzezahrai
{"title":"Frequency Based Radiance Cache for Rendering Animations","authors":"Renaud Adrien Dubouchet, Laurent Belcour, D. Nowrouzezahrai","doi":"10.2312/sre.20171193","DOIUrl":"https://doi.org/10.2312/sre.20171193","url":null,"abstract":"We propose a method to render animation sequences with direct distant lighting that only shades a fraction of the total pixels. We leverage frequency-based analyses of light transport to determine shading and image sampling rates across an animation using a samples cache. To do so, we derive frequency bandwidths that account for the complexity of distant lights, visibility, BRDF, and temporal coherence during animation. We finaly apply a cross-bilateral filter when rendering our final images from sparse sets of shading points placed according to our frequency-based oracles (generally < 25% of the pixels, per frame).","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"85 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124582714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ambient Dice","authors":"Michal Iwanicki, Peter-Pike J. Sloan","doi":"10.2312/sre.20171191","DOIUrl":"https://doi.org/10.2312/sre.20171191","url":null,"abstract":"We present a family of basis functions designed to accurately and efficiently represent illumination signals on the unit sphere. The bases are built of locally supported functions, needing three to six basis functions in a given direction. This minimizes the number of memory transactions and bandwidth requirements needed for reconstruction. \u0000 \u0000There are three variations of our basis. All are based on storing coefficients at the 12 vertices of an icosahedron. The first one stores the values directly, together with their directional derivatives and hybrid Bezier patches are used for interpolation. This allows one to achieve quality comparable to 3rd-5th order spherical harmonics while still requiring 27 coefficients for the reconstruction. The second variation encodes the signal in YCoCg space and uses a reduced quality, linear reconstruction for the chromaticity components - requiring only 15 coefficients while marginally reducing the quality. The third option exploits the partition of unity formed by cos2 and cos4 restricted to a hemisphere oriented along the directions of the icosahedron vertices. It uses 18 coefficients for the reconstruction, but trades the additional bandwidth requirements for simpler calculations. The quality of that version is still comparable to 3rd order spherical harmonics (SH). \u0000 \u0000We name the basis Ambient Dice as a reference to both: the Ambient Cube basis - as ours is an extension of some of its properties - and the 20-sided dice commonly used in pen-and-paper role-playing games, which is an icosahedron.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130699797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"VAO++: Practical Volumetric Ambient Occlusion for Games","authors":"Jakub Boksanský, Adam Pospísil, Jiří Bittner","doi":"10.2312/sre.20171192","DOIUrl":"https://doi.org/10.2312/sre.20171192","url":null,"abstract":"Ambient occlusion is one of the commonly used methods to increase visual fidelity in real-time rendering applications. We propose several extensions of the recently introduced volumetric ambient occlusion method. These extensions improve the properties of the methods with a particular focus on the quality vs performance tradeoff and wide applicability in contemporary games. We describe the implementation of the proposed algorithm and its extensions. We implemented the method as a camera effect within the Unity game engine. The results show that our implementation compares favorably with the standard ambient occlusion in Unity both in terms of quality and speed.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129310955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}