基于参数混合模型的BRDF高效采样统一流形框架

Sebastian Herholz, Oskar Elek, Jens Schindel, Jaroslav Křivánek, H. Lensch
{"title":"基于参数混合模型的BRDF高效采样统一流形框架","authors":"Sebastian Herholz, Oskar Elek, Jens Schindel, Jaroslav Křivánek, H. Lensch","doi":"10.2312/sre.20181171","DOIUrl":null,"url":null,"abstract":"Virtually all existing analytic BRDF models are built from multiple functional components (e.g., Fresnel term, normal distribution function, etc.). This makes accurate importance sampling of the full model challenging, and so current solutions only cover a subset of the model's components. This leads to sub-optimal or even invalid proposed directional samples, which can negatively impact the efficiency of light transport solvers based on Monte Carlo integration. To overcome this problem, we propose a unified BRDF sampling strategy based on parametric mixture models (PMMs). We show that for a given BRDF, the parameters of the associated PMM can be defined in smooth manifold spaces, which can be compactly represented using multivariate B-Splines. These manifolds are defined in the parameter space of the BRDF and allow for arbitrary, continuous queries of the PMM representation for varying BRDF parameters, which further enables importance sampling for spatially varying BRDFs. Our representation is not limited to analytic BRDF models, but can also be used for sampling measured BRDF data. The resulting manifold framework enables accurate and efficient BRDF importance sampling with very small approximation errors.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Unified Manifold Framework for Efficient BRDF Sampling based on Parametric Mixture Models\",\"authors\":\"Sebastian Herholz, Oskar Elek, Jens Schindel, Jaroslav Křivánek, H. Lensch\",\"doi\":\"10.2312/sre.20181171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtually all existing analytic BRDF models are built from multiple functional components (e.g., Fresnel term, normal distribution function, etc.). This makes accurate importance sampling of the full model challenging, and so current solutions only cover a subset of the model's components. This leads to sub-optimal or even invalid proposed directional samples, which can negatively impact the efficiency of light transport solvers based on Monte Carlo integration. To overcome this problem, we propose a unified BRDF sampling strategy based on parametric mixture models (PMMs). We show that for a given BRDF, the parameters of the associated PMM can be defined in smooth manifold spaces, which can be compactly represented using multivariate B-Splines. These manifolds are defined in the parameter space of the BRDF and allow for arbitrary, continuous queries of the PMM representation for varying BRDF parameters, which further enables importance sampling for spatially varying BRDFs. Our representation is not limited to analytic BRDF models, but can also be used for sampling measured BRDF data. The resulting manifold framework enables accurate and efficient BRDF importance sampling with very small approximation errors.\",\"PeriodicalId\":363391,\"journal\":{\"name\":\"Eurographics Symposium on Rendering\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Symposium on Rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/sre.20181171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Symposium on Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/sre.20181171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

几乎所有现有的分析BRDF模型都是由多个功能组件(例如,菲涅耳项,正态分布函数等)构建的。这使得对整个模型进行准确的重要性采样具有挑战性,因此当前的解决方案只覆盖了模型组件的子集。这将导致次优甚至无效的方向样本,从而对基于蒙特卡罗积分的光输运求解器的效率产生负面影响。为了克服这一问题,我们提出了一种基于参数混合模型(pmm)的统一BRDF采样策略。我们证明了对于给定的BRDF,相关PMM的参数可以在光滑流形空间中定义,并且可以用多元b样条紧凑地表示。这些流形在BRDF的参数空间中定义,并允许对不同BRDF参数的PMM表示进行任意连续查询,从而进一步实现对空间变化的BRDF的重要性采样。我们的表示不仅限于分析BRDF模型,还可以用于抽样测量BRDF数据。由此产生的流形框架能够以非常小的近似误差进行准确有效的BRDF重要性采样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Manifold Framework for Efficient BRDF Sampling based on Parametric Mixture Models
Virtually all existing analytic BRDF models are built from multiple functional components (e.g., Fresnel term, normal distribution function, etc.). This makes accurate importance sampling of the full model challenging, and so current solutions only cover a subset of the model's components. This leads to sub-optimal or even invalid proposed directional samples, which can negatively impact the efficiency of light transport solvers based on Monte Carlo integration. To overcome this problem, we propose a unified BRDF sampling strategy based on parametric mixture models (PMMs). We show that for a given BRDF, the parameters of the associated PMM can be defined in smooth manifold spaces, which can be compactly represented using multivariate B-Splines. These manifolds are defined in the parameter space of the BRDF and allow for arbitrary, continuous queries of the PMM representation for varying BRDF parameters, which further enables importance sampling for spatially varying BRDFs. Our representation is not limited to analytic BRDF models, but can also be used for sampling measured BRDF data. The resulting manifold framework enables accurate and efficient BRDF importance sampling with very small approximation errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信