矩阵双向路径跟踪

C. R. A. Chaitanya, Laurent Belcour, T. Hachisuka, Simon Premoze, J. Pantaleoni, D. Nowrouzezahrai
{"title":"矩阵双向路径跟踪","authors":"C. R. A. Chaitanya, Laurent Belcour, T. Hachisuka, Simon Premoze, J. Pantaleoni, D. Nowrouzezahrai","doi":"10.2312/sre.20181169","DOIUrl":null,"url":null,"abstract":"Sampled paths in Monte Carlo ray tracing can be arbitrarily close to each other due to its stochastic nature. Such clumped samples in the path space tend to contribute little toward an accurate estimate of each pixel. Bidirectional light transport methods make this issue further complicated since connecting paths of sampled subpaths can be arbitrarily clumped again. We propose a matrix formulation of bidirectional light transport that enables stratification (and low-discrepancy sampling) in this connection space. This stratification allows us to distribute computation evenly across contributing paths in the image, which is not possible with standard bidirectional or Markov chain solutions. Each element in our matrix formulation represents a pair of connected eye- and light-subpaths. By carefully reordering these elements, we build a 2D space where equally contributing paths are distributed coherently. We devise an unbiased rendering algorithm that leverages this coherence to effectively sample path space, consistently achieving a 2 − 3 x speedup in radiometrically complex scenes compared to the state-of-the-art.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Matrix Bidirectional Path Tracing\",\"authors\":\"C. R. A. Chaitanya, Laurent Belcour, T. Hachisuka, Simon Premoze, J. Pantaleoni, D. Nowrouzezahrai\",\"doi\":\"10.2312/sre.20181169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sampled paths in Monte Carlo ray tracing can be arbitrarily close to each other due to its stochastic nature. Such clumped samples in the path space tend to contribute little toward an accurate estimate of each pixel. Bidirectional light transport methods make this issue further complicated since connecting paths of sampled subpaths can be arbitrarily clumped again. We propose a matrix formulation of bidirectional light transport that enables stratification (and low-discrepancy sampling) in this connection space. This stratification allows us to distribute computation evenly across contributing paths in the image, which is not possible with standard bidirectional or Markov chain solutions. Each element in our matrix formulation represents a pair of connected eye- and light-subpaths. By carefully reordering these elements, we build a 2D space where equally contributing paths are distributed coherently. We devise an unbiased rendering algorithm that leverages this coherence to effectively sample path space, consistently achieving a 2 − 3 x speedup in radiometrically complex scenes compared to the state-of-the-art.\",\"PeriodicalId\":363391,\"journal\":{\"name\":\"Eurographics Symposium on Rendering\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Symposium on Rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/sre.20181169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Symposium on Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/sre.20181169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

由于蒙特卡罗射线追踪的随机性,采样路径之间可以任意接近。在路径空间中,这种聚集的样本往往对每个像素的准确估计贡献不大。双向光传输方法使得这个问题更加复杂,因为采样子路径的连接路径可以再次任意聚集。我们提出了一个双向光传输的矩阵公式,可以在这个连接空间中实现分层(和低差异采样)。这种分层允许我们将计算均匀地分布在图像中的贡献路径上,这是标准双向或马尔可夫链解决方案无法实现的。我们的矩阵公式中的每个元素代表一对连接的眼睛和光子路径。通过仔细地重新排列这些元素,我们构建了一个2D空间,其中相等贡献的路径是连贯分布的。我们设计了一种无偏渲染算法,利用这种相干性有效地采样路径空间,与最先进的技术相比,在辐射复杂场景中始终如一地实现2 - 3倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix Bidirectional Path Tracing
Sampled paths in Monte Carlo ray tracing can be arbitrarily close to each other due to its stochastic nature. Such clumped samples in the path space tend to contribute little toward an accurate estimate of each pixel. Bidirectional light transport methods make this issue further complicated since connecting paths of sampled subpaths can be arbitrarily clumped again. We propose a matrix formulation of bidirectional light transport that enables stratification (and low-discrepancy sampling) in this connection space. This stratification allows us to distribute computation evenly across contributing paths in the image, which is not possible with standard bidirectional or Markov chain solutions. Each element in our matrix formulation represents a pair of connected eye- and light-subpaths. By carefully reordering these elements, we build a 2D space where equally contributing paths are distributed coherently. We devise an unbiased rendering algorithm that leverages this coherence to effectively sample path space, consistently achieving a 2 − 3 x speedup in radiometrically complex scenes compared to the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信