{"title":"On Poisson transforms for spinors","authors":"S. Ben Saïd, A. Boussejra, K. Koufany","doi":"10.2140/tunis.2023.5.771","DOIUrl":"https://doi.org/10.2140/tunis.2023.5.771","url":null,"abstract":". Let ( τ, V τ ) be a spinor representation of Spin( n ) and let ( σ, V σ ) be a spinor representation of Spin( n − 1) that occurs in the restriction τ | Spin( n − 1) . We consider the real hyperbolic space H n ( R ) as the rank one homogeneous space Spin 0 (1 , n ) / Spin( n ) and the spinor bundle Σ H n ( R ) over H n ( R ) as the homogeneous bundle Spin 0 (1 , n ) × Spin( n ) V τ . Our aim is to characterize eigenspinors of the algebra of invariant differential operators acting on Σ H n ( R ) which can be written as the Poisson transform of L p -sections of the bundle Spin( n ) × Spin( n − 1) V σ over the boundary S n − 1 ≃ Spin( n ) / Spin( n − 1) of H n ( R ).","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":"43 7","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139253017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An explicit formula for the Benjamin–Ono equation","authors":"Patrick Gérard","doi":"10.2140/tunis.2023.5.593","DOIUrl":"https://doi.org/10.2140/tunis.2023.5.593","url":null,"abstract":"We establish an explicit formula for the general solution of the Benjamin-Ono equation on the torus and on the line. Contents 1. Introduction 1 1.1. The Benjamin-Ono equation 1 1.2. The Lax pair 2 1.3. The explicit formula on the torus 3 1.4. The explicit formula on the line 3 1.5. Organization of the paper 4 2. Proof of the explicit formula on the torus 4 3. Proof of the explicit formula on the line 6 4. Final remarks 8 References 9","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":"9 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Singularities of normal quartic surfaces, III : char = 2, nonsupersingular","authors":"Fabrizio Catanese, Matthias Schütt","doi":"10.2140/tunis.2023.5.457","DOIUrl":"https://doi.org/10.2140/tunis.2023.5.457","url":null,"abstract":"","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":"31 13","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135973123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear enhanced dissipation and inviscid damping for the 2D Couette flow","authors":"Dongyi Wei, Zhifei Zhang","doi":"10.2140/tunis.2023.5.573","DOIUrl":"https://doi.org/10.2140/tunis.2023.5.573","url":null,"abstract":"","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":"32 19","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135973268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The mod-p Riemann–Hilbert correspondence\u0000and the perfect site","authors":"A. Mathew","doi":"10.2140/tunis.2023.5.369","DOIUrl":"https://doi.org/10.2140/tunis.2023.5.369","url":null,"abstract":"The mod $p$ Riemann-Hilbert correspondence (in covariant and contravariant forms) relates $mathbb{F}_p$-'etale sheaves on the spectrum of an $mathbb{F}_p$-algebra $R$ and Frobenius modules over $R$. We give an exposition of these correspondences using Breen's vanishing results on the perfect site.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49268950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}