{"title":"模-p Riemann-Hilbert对应关系与完全位置","authors":"A. Mathew","doi":"10.2140/tunis.2023.5.369","DOIUrl":null,"url":null,"abstract":"The mod $p$ Riemann-Hilbert correspondence (in covariant and contravariant forms) relates $\\mathbb{F}_p$-\\'etale sheaves on the spectrum of an $\\mathbb{F}_p$-algebra $R$ and Frobenius modules over $R$. We give an exposition of these correspondences using Breen's vanishing results on the perfect site.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mod-p Riemann–Hilbert correspondence\\nand the perfect site\",\"authors\":\"A. Mathew\",\"doi\":\"10.2140/tunis.2023.5.369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mod $p$ Riemann-Hilbert correspondence (in covariant and contravariant forms) relates $\\\\mathbb{F}_p$-\\\\'etale sheaves on the spectrum of an $\\\\mathbb{F}_p$-algebra $R$ and Frobenius modules over $R$. We give an exposition of these correspondences using Breen's vanishing results on the perfect site.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2023.5.369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2023.5.369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The mod-p Riemann–Hilbert correspondence
and the perfect site
The mod $p$ Riemann-Hilbert correspondence (in covariant and contravariant forms) relates $\mathbb{F}_p$-\'etale sheaves on the spectrum of an $\mathbb{F}_p$-algebra $R$ and Frobenius modules over $R$. We give an exposition of these correspondences using Breen's vanishing results on the perfect site.