区间上半经典薛定谔本征函数的一致观测

IF 0.8 Q2 MATHEMATICS
Camille Laurent, Matthieu Léautaud
{"title":"区间上半经典薛定谔本征函数的一致观测","authors":"Camille Laurent, Matthieu Léautaud","doi":"10.2140/tunis.2023.5.125","DOIUrl":null,"url":null,"abstract":"We consider eigenfunctions of a semiclassical Schr{\\\"o}dinger operator on an interval, with a single-well type potential and Dirichlet boundary conditions. We give upper/lower bounds on the L^2 density of the eigenfunctions that are uniform in both semiclassical and high energy limits. These bounds are optimal and are used in an essential way in a companion paper in application to a controllability problem. The proofs rely on Agmon estimates and a Gronwall type argument in the classically forbidden region, and on the description of semiclassical measures for boundary value problems in the classically allowed region. Limited regularity for the potential is assumed.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Uniform observation of semiclassical\\nSchrödinger eigenfunctions on an interval\",\"authors\":\"Camille Laurent, Matthieu Léautaud\",\"doi\":\"10.2140/tunis.2023.5.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider eigenfunctions of a semiclassical Schr{\\\\\\\"o}dinger operator on an interval, with a single-well type potential and Dirichlet boundary conditions. We give upper/lower bounds on the L^2 density of the eigenfunctions that are uniform in both semiclassical and high energy limits. These bounds are optimal and are used in an essential way in a companion paper in application to a controllability problem. The proofs rely on Agmon estimates and a Gronwall type argument in the classically forbidden region, and on the description of semiclassical measures for boundary value problems in the classically allowed region. Limited regularity for the potential is assumed.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2023.5.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2023.5.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们考虑半经典Schr的本征函数区间上的dinger算子,具有单阱型势和Dirichlet边界条件。我们给出了本征函数的L^2密度的上/下界,这些本征函数在半经典和高能极限下都是一致的。这些边界是最优的,并且在应用于可控性问题的配套论文中以重要的方式使用。证明依赖于经典禁域中的Agmon估计和Gronwall型论证,以及经典允许域中边值问题的半经典测度的描述。假设电势具有有限的规律性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform observation of semiclassical Schrödinger eigenfunctions on an interval
We consider eigenfunctions of a semiclassical Schr{\"o}dinger operator on an interval, with a single-well type potential and Dirichlet boundary conditions. We give upper/lower bounds on the L^2 density of the eigenfunctions that are uniform in both semiclassical and high energy limits. These bounds are optimal and are used in an essential way in a companion paper in application to a controllability problem. The proofs rely on Agmon estimates and a Gronwall type argument in the classically forbidden region, and on the description of semiclassical measures for boundary value problems in the classically allowed region. Limited regularity for the potential is assumed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信