{"title":"关于旋量的泊松变换","authors":"S. Ben Saïd, A. Boussejra, K. Koufany","doi":"10.2140/tunis.2023.5.771","DOIUrl":null,"url":null,"abstract":". Let ( τ, V τ ) be a spinor representation of Spin( n ) and let ( σ, V σ ) be a spinor representation of Spin( n − 1) that occurs in the restriction τ | Spin( n − 1) . We consider the real hyperbolic space H n ( R ) as the rank one homogeneous space Spin 0 (1 , n ) / Spin( n ) and the spinor bundle Σ H n ( R ) over H n ( R ) as the homogeneous bundle Spin 0 (1 , n ) × Spin( n ) V τ . Our aim is to characterize eigenspinors of the algebra of invariant differential operators acting on Σ H n ( R ) which can be written as the Poisson transform of L p -sections of the bundle Spin( n ) × Spin( n − 1) V σ over the boundary S n − 1 ≃ Spin( n ) / Spin( n − 1) of H n ( R ).","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Poisson transforms for spinors\",\"authors\":\"S. Ben Saïd, A. Boussejra, K. Koufany\",\"doi\":\"10.2140/tunis.2023.5.771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let ( τ, V τ ) be a spinor representation of Spin( n ) and let ( σ, V σ ) be a spinor representation of Spin( n − 1) that occurs in the restriction τ | Spin( n − 1) . We consider the real hyperbolic space H n ( R ) as the rank one homogeneous space Spin 0 (1 , n ) / Spin( n ) and the spinor bundle Σ H n ( R ) over H n ( R ) as the homogeneous bundle Spin 0 (1 , n ) × Spin( n ) V τ . Our aim is to characterize eigenspinors of the algebra of invariant differential operators acting on Σ H n ( R ) which can be written as the Poisson transform of L p -sections of the bundle Spin( n ) × Spin( n − 1) V σ over the boundary S n − 1 ≃ Spin( n ) / Spin( n − 1) of H n ( R ).\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2023.5.771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2023.5.771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
.设 ( τ, V τ ) 为 Spin( n ) 的一个旋量表示,设 ( σ, V σ ) 为 Spin( n - 1) 的一个旋量表示,该表示出现在限制 τ | Spin( n - 1) 中。我们认为实双曲空间 H n ( R ) 是秩一均相空间 Spin 0 (1 , n ) / Spin( n ) ,而 H n ( R ) 上的旋光束 Σ H n ( R ) 是均相束 Spin 0 (1 , n ) × Spin( n ) V τ 。我们的目的是描述作用于 Σ H n ( R ) 的不变二阶算子代数的特征特征旋子,这些特征旋子可以写成 H n ( R ) 边界 S n - 1 ≃ Spin( n ) / Spin( n - 1) 上的 Spin( n ) × Spin( n - 1) V σ 束 L p 截面的泊松变换。
. Let ( τ, V τ ) be a spinor representation of Spin( n ) and let ( σ, V σ ) be a spinor representation of Spin( n − 1) that occurs in the restriction τ | Spin( n − 1) . We consider the real hyperbolic space H n ( R ) as the rank one homogeneous space Spin 0 (1 , n ) / Spin( n ) and the spinor bundle Σ H n ( R ) over H n ( R ) as the homogeneous bundle Spin 0 (1 , n ) × Spin( n ) V τ . Our aim is to characterize eigenspinors of the algebra of invariant differential operators acting on Σ H n ( R ) which can be written as the Poisson transform of L p -sections of the bundle Spin( n ) × Spin( n − 1) V σ over the boundary S n − 1 ≃ Spin( n ) / Spin( n − 1) of H n ( R ).