Uniformity of rational points: an up-date and corrections

IF 0.8 Q2 MATHEMATICS
L. Caporaso, J. Harris, B. Mazur
{"title":"Uniformity of rational points: an up-date and corrections","authors":"L. Caporaso, J. Harris, B. Mazur","doi":"10.2140/tunis.2022.4.183","DOIUrl":null,"url":null,"abstract":"In [2] it is asserted that, assuming the truth of the Strong Lang Conjecture (Conjecture 1 below), a very strong form of boundedness holds: for every g ≥ 2 there is a finite bound N(g)—not depending on K!—such that for any number field K there are only finitely many isomorphism classes of curves of genus g defined over K with more than N(g) K-rational points. The issue is, in that statement do we mean finitely many isomorphism classes over K, or over the algebraic closure K? The paper asserts the statement in the stronger form—up to isomorphism over K—but the proof establishes only the weaker statement that there are finitely many curves with more than N(g) points up to isomorphism over K.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2022.4.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In [2] it is asserted that, assuming the truth of the Strong Lang Conjecture (Conjecture 1 below), a very strong form of boundedness holds: for every g ≥ 2 there is a finite bound N(g)—not depending on K!—such that for any number field K there are only finitely many isomorphism classes of curves of genus g defined over K with more than N(g) K-rational points. The issue is, in that statement do we mean finitely many isomorphism classes over K, or over the algebraic closure K? The paper asserts the statement in the stronger form—up to isomorphism over K—but the proof establishes only the weaker statement that there are finitely many curves with more than N(g) points up to isomorphism over K.
有理点的一致性:更新和修正
在[2]中,我们断言,假设强朗猜想(下面的猜想1)成立,一个非常强的有界性形式成立:对于每一个g≥2,存在一个有限界N(g) -不依赖于K!-使得对于任意数域K,只有有限多个在K上定义的g属曲线的同构类具有大于N(g)个K-有理点。问题是,在这个表述中我们是指K上,还是代数闭包K上,有有限多个同构类吗?本文以较强的形式证明了K上同构的命题,但证明只建立了较弱的命题,即有有限多条大于N(g)的曲线指向K上同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信