On Poisson transforms for spinors

IF 0.8 Q2 MATHEMATICS
S. Ben Saïd, A. Boussejra, K. Koufany
{"title":"On Poisson transforms for spinors","authors":"S. Ben Saïd, A. Boussejra, K. Koufany","doi":"10.2140/tunis.2023.5.771","DOIUrl":null,"url":null,"abstract":". Let ( τ, V τ ) be a spinor representation of Spin( n ) and let ( σ, V σ ) be a spinor representation of Spin( n − 1) that occurs in the restriction τ | Spin( n − 1) . We consider the real hyperbolic space H n ( R ) as the rank one homogeneous space Spin 0 (1 , n ) / Spin( n ) and the spinor bundle Σ H n ( R ) over H n ( R ) as the homogeneous bundle Spin 0 (1 , n ) × Spin( n ) V τ . Our aim is to characterize eigenspinors of the algebra of invariant differential operators acting on Σ H n ( R ) which can be written as the Poisson transform of L p -sections of the bundle Spin( n ) × Spin( n − 1) V σ over the boundary S n − 1 ≃ Spin( n ) / Spin( n − 1) of H n ( R ).","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2023.5.771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. Let ( τ, V τ ) be a spinor representation of Spin( n ) and let ( σ, V σ ) be a spinor representation of Spin( n − 1) that occurs in the restriction τ | Spin( n − 1) . We consider the real hyperbolic space H n ( R ) as the rank one homogeneous space Spin 0 (1 , n ) / Spin( n ) and the spinor bundle Σ H n ( R ) over H n ( R ) as the homogeneous bundle Spin 0 (1 , n ) × Spin( n ) V τ . Our aim is to characterize eigenspinors of the algebra of invariant differential operators acting on Σ H n ( R ) which can be written as the Poisson transform of L p -sections of the bundle Spin( n ) × Spin( n − 1) V σ over the boundary S n − 1 ≃ Spin( n ) / Spin( n − 1) of H n ( R ).
关于旋量的泊松变换
.设 ( τ, V τ ) 为 Spin( n ) 的一个旋量表示,设 ( σ, V σ ) 为 Spin( n - 1) 的一个旋量表示,该表示出现在限制 τ | Spin( n - 1) 中。我们认为实双曲空间 H n ( R ) 是秩一均相空间 Spin 0 (1 , n ) / Spin( n ) ,而 H n ( R ) 上的旋光束 Σ H n ( R ) 是均相束 Spin 0 (1 , n ) × Spin( n ) V τ 。我们的目的是描述作用于 Σ H n ( R ) 的不变二阶算子代数的特征特征旋子,这些特征旋子可以写成 H n ( R ) 边界 S n - 1 ≃ Spin( n ) / Spin( n - 1) 上的 Spin( n ) × Spin( n - 1) V σ 束 L p 截面的泊松变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信