Ekaterina N. Kudryavtseva, Boris V. Lichitsky, Evgeny V. Tretyakov
{"title":"Investigation of the reaction of hexafluoro-1,4-naphthoquinone with substituted phenols","authors":"Ekaterina N. Kudryavtseva, Boris V. Lichitsky, Evgeny V. Tretyakov","doi":"10.1016/j.jfluchem.2025.110402","DOIUrl":"10.1016/j.jfluchem.2025.110402","url":null,"abstract":"<div><div>Reaction of hexafluoro-1,4-naphthoquinone with various phenols was studied for the first time. It was shown that sodium acetate is a convenient reagent for implementation of the process. The investigated condensation led exclusively to substitution of two fluorine atoms in the quinone core. Based on performed research the method for preparation of substituted 2,3-diaryloxy-5,6,7,8-tetrafluoronaphthalene-1,4-diones was elaborated. Using similar conditions pentafluorobenzo[<em>a</em>]phenoxazine derivatives were obtained from 2-aminophenols. In contrast to phenols cyclic 1,3-diketones in the reaction with perfluoronaphthoquinone act as C-nucleophiles resulting in fluorinated polycondensed furans. Structures of key obtained products were proved using X-ray analysis.</div></div>","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"282 ","pages":"Article 110402"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143394399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karolina Paszek, Henryk Koroniak, Katarzyna Koroniak–Szejn
{"title":"Introducing CF3 group at alkenyl C=C bond. Recent developments","authors":"Karolina Paszek, Henryk Koroniak, Katarzyna Koroniak–Szejn","doi":"10.1016/j.jfluchem.2025.110403","DOIUrl":"10.1016/j.jfluchem.2025.110403","url":null,"abstract":"<div><div>Recently, significant interest has been developed in pharmaceuticals containing fluorine The biological effects depend on the number and type of fluorine groups in the drug molecule. Much attention has been also paid to improve biological activity, <em>in vivo</em> stability, or bioavailability by studying the chemical modification of peptide structure. The most frequently studied fluorine-containing functional group is the trifluoromethyl group, which also occurs as a C(sp<sup>2</sup>)–CF<sub>3</sub> bond. The trifluoromethyl alkyl group structure helps the peptide maintain its original <em>β</em>-turn structure, effectively mimicking the natural peptide bond, which allows it to function as its isostere. Therefore, the development of methods for synthesizing the trifluoromethylalkene group is becoming increasingly popular due to the potential of the products as building blocks of bioactive molecules. This review describes various methods for the preparation of the compounds with a trifluoromethylalkene group using trifluorinating reagents via the transition metal-mediated and the transition metal-free trifluoromethylation reactions.</div></div>","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"282 ","pages":"Article 110403"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143420653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploration of 2-(pentafluoro-λ6-sulfanyl)ethane-1-sulfonyl chloride as a novel pentafluorosulfanylation reagent","authors":"Laurianne Verret , Kelly Burchell-Reyes , Jean-François Morin , Jean-François Paquin","doi":"10.1016/j.jfluchem.2024.110387","DOIUrl":"10.1016/j.jfluchem.2024.110387","url":null,"abstract":"<div><div>In this paper, we report our initial results on the development of 2-(pentafluoro-λ<sup>6</sup>-sulfanyl)ethane-1-sulfonyl chloride as a novel pentafluorosulfanylation reagent. The targeted reagent was synthesized in five steps from vinyl acetate. As opposed to gaseous SF<sub>5</sub>Cl, 2-(pentafluoro-λ<sup>6</sup>-sulfanyl)ethane-1-sulfonyl chloride is a liquid under ambient conditions. Its reaction with substituted-phenylvinyl acetates under photoredox catalysis provided the corresponding α-SF<sub>5</sub>-ketones in low to moderate yields due in part to an incomplete desulfonylation step. Nonetheless, these results serve as a promising starting point for the further development of pentafluorosulfanylation reagent.</div></div>","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"282 ","pages":"Article 110387"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143152577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solid-state chemistry of inorganic fluorides: From tungsten-bronze types to functionalized nanofluorides: A review","authors":"Alain Tressaud","doi":"10.1016/j.jfluchem.2024.110374","DOIUrl":"10.1016/j.jfluchem.2024.110374","url":null,"abstract":"<div><div>Solid-state chemistry of inorganic fluorides has gained great importance in the second half of 20<sup>th</sup> century. It aims at identifying the relationships between the structural networks and the physical properties resulting from interactions within these networks. One of the most significant results was the discovery in the 1960s of series of A<sub>x</sub>MF<sub>3</sub> fluorides with structures similar to those of tungsten oxide bronzes. The investigation of other compounds mainly based on Al, Ga and transition metals with structures derived from ReO<sub>3</sub>, hexagonal tungsten bronze (HTB), tetragonal tungsten bronzes (TTB), defect pyrochlore and perovskite was soon launched in relation, in a first step, to their magnetic properties. Such interest was further extended to various properties such as positive electrodes in Li-ion batteries, UV absorbers, multiferroic components. Today, solid-state inorganic fluorides are present at the nano-sized level as components in many advanced technologies, including Li batteries or all solid-state fluorine batteries, micro- or nano-photonics, up- or down-conversion fluorescent probes, solid-state lasers, nonlinear optics, nuclear cycle, superhydrophobic coatings, etc. It has been pointed out that most of these outstanding properties can be correlated to the exceptional electronic properties of elemental fluorine, F<sub>2</sub>.</div><div>The aim of this article is to review the solid-state chemistry of fluorides having the formula A<sub>x</sub>MF<sub>3</sub> over several decades, from their discovery in the 1960s to the interesting physical-chemical properties more recently investigated on these phases that derive from the ReO<sub>3</sub>, perovskite, defect-pyrochlore, hexagonal- and tetragonal- tungsten bronze types.</div></div>","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"281 ","pages":"Article 110374"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Obituary “Professor Dr. Andreas Josef Kornath – May 6, 1965 — March 5, 2024”.","authors":"Joseph S. Thrasher","doi":"10.1016/j.jfluchem.2024.110385","DOIUrl":"10.1016/j.jfluchem.2024.110385","url":null,"abstract":"","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"281 ","pages":"Article 110385"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143100104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiayao Li , Vyacheslav I. Krasnov , Elena V. Karpova , Rodion V. Andreev , Inna K. Shundrina , IrinaYu Bagryanskaya , Galina A. Selivanova
{"title":"Corrigendum to “Transformation of Fluorinated 1,2-Phenylenediamines in Polyphosphoric Acid medium with or without the Benzimidazole 2-Carboxylic Acid: Synthesis of Fluorinated 2,2′-Bibenzimidazoles and Phenazine-2,3-diamines” [Journal of Fluorine Chemistry, 2024, 277, 110313]","authors":"Jiayao Li , Vyacheslav I. Krasnov , Elena V. Karpova , Rodion V. Andreev , Inna K. Shundrina , IrinaYu Bagryanskaya , Galina A. Selivanova","doi":"10.1016/j.jfluchem.2024.110388","DOIUrl":"10.1016/j.jfluchem.2024.110388","url":null,"abstract":"","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"281 ","pages":"Article 110388"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143092394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrosion of iron in liquid uranium hexafluoride at 80 °C. Part II: Corrosion mechanism","authors":"Mickaël Achour , Laure Martinelli , Sylvie Chatain , Fréderic Miserque , Laurent Jouffret , Marc Dubois , Pierre Bonnet , Ania Selmi , Bertrand Morel , Sylvie Delpech","doi":"10.1016/j.jfluchem.2024.110373","DOIUrl":"10.1016/j.jfluchem.2024.110373","url":null,"abstract":"<div><div>Thanks to species identification and growth interface localization experiments, a mechanism of iron corrosion in liquid UF<sub>6</sub> at 80 °C was suggested. After an UF<sub>6</sub> dissociation step, resulting fluorine (HF, F<sup>-</sup> or F•) was adsorbed at the FeF<sub>2</sub> external interface and diffused into the iron fluoride layer via fluorine vacancy. FeF<sub>2</sub> grew thus at the FeF<sub>2</sub>/Fe interface. Two FeF<sub>2</sub> growth kinetics were observed depending on the presence or absence of NO<sub>x</sub>F impurities. Both corrosion rates were controlled by the cathodic reaction and presence of NO<sub>x</sub>F catalysed it.</div></div>","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"281 ","pages":"Article 110373"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kostiantyn P. Melnykov , Oleksandr S. Liashuk , Oleh Smyrnov , Dmytro Lesyk , Yuliia Holota , Petro Borysko , Viktor Yakubovskyi , Oleksandr O. Grygorenko
{"title":"Lipophilicity effects of monofluorination at the tertiary aliphatic carbon as a function of α-substituent","authors":"Kostiantyn P. Melnykov , Oleksandr S. Liashuk , Oleh Smyrnov , Dmytro Lesyk , Yuliia Holota , Petro Borysko , Viktor Yakubovskyi , Oleksandr O. Grygorenko","doi":"10.1016/j.jfluchem.2024.110384","DOIUrl":"10.1016/j.jfluchem.2024.110384","url":null,"abstract":"<div><div>Effects of monofluorination at the tertiary aliphatic carbon on the compound's lipophilicity were measured for a series of model 4-substituted piperidine-derived benzamides. It was found that the observed ΔLog<em>P</em> values strongly depend on the nature of α-substituent present at the C-4 position. In particular, ΔLog<em>P</em> increased with increasing the substituent's electronegativity (as described by field effect). Using qualitative molecular electrostatic potential surface (MEPS) analysis, we suggested that the fluorine effect on the compound's lipophilicity in the studied systems is defined by electronic distribution modulation at the neighboring atoms (especially Hydrogens).</div></div>","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"281 ","pages":"Article 110384"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143100105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ivan A. Kochnev, Lyudmila S. Zavyalova, Azaliia I. Avkhadieva, Nikolay A. Tverdokhlebov, Alexey Y. Barkov
{"title":"6-Polyfluoroalkyl-1-arylhexane-1,3,5-triones: Syntheses, ring-chain tautomerism and dehydrative cyclization to 6-polyfluoroalkyl-1-arylpyran-4H-ones","authors":"Ivan A. Kochnev, Lyudmila S. Zavyalova, Azaliia I. Avkhadieva, Nikolay A. Tverdokhlebov, Alexey Y. Barkov","doi":"10.1016/j.jfluchem.2024.110368","DOIUrl":"10.1016/j.jfluchem.2024.110368","url":null,"abstract":"<div><div>In this work, we present a synthetic protocol for the synthesis of non-symmetrical fluoroalkylated triketones. The synthesis is based on the reaction of benzoyl acetones with esters in the presence of excess lithium hydride. The tautomeric equilibrium of triketones in CDCl<sub>3</sub> and DMSO‑<em>d</em><sub>6</sub> solutions was studied. The synthetic application of 1,3,5-triketones has been demonstrated. A method has been developed for the efficient synthesis of 2-aryl-6-(polyfluoroalkyl)-4<em>H</em>-pyran-4-ones by dehydrative cyclization.</div></div>","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"280 ","pages":"Article 110368"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}