Yuanpeng Li , Yibo Wang , Lin Lu , Jie Shi , Xiaohui Wang
{"title":"Non-small-molecule therapeutics for drug addiction: From pharmaco-kinetics modulating to synthetic biology","authors":"Yuanpeng Li , Yibo Wang , Lin Lu , Jie Shi , Xiaohui Wang","doi":"10.1016/j.fmre.2022.09.027","DOIUrl":"10.1016/j.fmre.2022.09.027","url":null,"abstract":"<div><div>Drug addiction is a pervasive problem worldwide. It not only affects the abuser's life, but also poses a serious threat to public health. Accordingly, there is a strong demand for the development of novel and effective therapies for drug addiction. Considering that small-molecule drugs have only had limited success, there is great interest in developing alternative strategies that extend the reach of small-molecule-based therapies. The antibody-based trapping approach and the enzyme catalytic strategy have been considered as promising ways to reduce the euphoria of drug users by altering drug pharmacokinetics and decreasing drug concentrations in the central nervous system. However, these biological macromolecules are generally unstable and their <em>in vivo</em> half-lives are short. With the rapid development of gene editing technologies, it is possible to perform <em>ex vivo</em> gene therapy for the long-term and stable delivery of enzymes and other effector proteins, which could free abusers from frequent injections of therapeutics. By constructing programmed gene switches that regulate spatiotemporal gene expression in response to illicit drugs, this perspective proposed the concept of preventing drug addiction by the drug itself. This strategy enables the controlled release of therapeutic proteins <em>in vivo</em> and is expected to improve patient safety and compliance. This will open up new opportunities for next-generation medicine and hold great promise for expanding our ability to treat drug addiction.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 6","pages":"Pages 1398-1400"},"PeriodicalIF":6.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47979756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The dead lithium formation under mechano-electrochemical coupling in lithium metal batteries","authors":"Xin Shen , Rui Zhang , Peng Shi , Xue-Qiang Zhang , Xiang Chen , Chen-Zi Zhao , Peng Wu , Yi-Ming Guo , Jia-Qi Huang , Qiang Zhang","doi":"10.1016/j.fmre.2022.11.005","DOIUrl":"10.1016/j.fmre.2022.11.005","url":null,"abstract":"<div><div>Lithium metal is one of the most promising anode materials for next-generation high-energy-density rechargeable batteries. A fundamental mechanism understanding of the dead lithium formation under the interplay of electrochemistry and mechanics in lithium metal batteries is strongly considered. Herein, we proposed a mechano-electrochemical phase-field model to describe the lithium stripping process and quantify the dead lithium formation under stress. In particular, the rupture of solid electrolyte interphase and the shift of equilibrium potential caused by stress are coupled into stripping kinetics. The impact of external pressure on dead lithium formation with various electrolyte properties and initial electrodeposited morphologies is revealed. The overlooked detrimental effect of external pressure on Li stripping affords fresh insights into cell configuration and pressure management, which is critical for practical applications of lithium metal batteries.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 6","pages":"Pages 1498-1505"},"PeriodicalIF":6.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47799670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yusheng Li , Yiming Li , Jiangjian Shi , Licheng Lou , Xiao Xu , Yuqi Cui , Jionghua Wu , Dongmei Li , Yanhong Luo , Huijue Wu , Qing Shen , Qingbo Meng
{"title":"Accelerating defect analysis of solar cells via machine learning of the modulated transient photovoltage","authors":"Yusheng Li , Yiming Li , Jiangjian Shi , Licheng Lou , Xiao Xu , Yuqi Cui , Jionghua Wu , Dongmei Li , Yanhong Luo , Huijue Wu , Qing Shen , Qingbo Meng","doi":"10.1016/j.fmre.2023.02.002","DOIUrl":"10.1016/j.fmre.2023.02.002","url":null,"abstract":"<div><div>Fast and non-destructive analysis of material defect is a crucial demand for semiconductor devices. Herein, we are devoted to exploring a solar-cell defect analysis method based on machine learning of the modulated transient photovoltage (m-TPV) measurement. The perturbation photovoltage generation and decay mechanism of the solar cell is firstly clarified for this study. High-throughput electrical transient simulations are further carried out to establish a database containing millions of m-TPV curves. This database is subsequently used to train an artificial neural network to correlate the m-TPV and defect properties of the perovskite solar cell. A Back Propagation neural network has been screened out and applied to provide a multiple parameter defect analysis of the cell. This analysis reveals that in a practical solar cell, compared to the defect density, the charge capturing cross-section plays a more critical role in influencing the charge recombination properties. We believe this defect analysis approach will play a more important and diverse role for solar cell studies.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 6","pages":"Pages 1650-1656"},"PeriodicalIF":6.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43164717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Wang , Hongzhang Shao , Xiaobo Qu , Jonas Eliasson
{"title":"Consolidating passenger and freight transportation in an urban–rural transit system","authors":"Tao Wang , Hongzhang Shao , Xiaobo Qu , Jonas Eliasson","doi":"10.1016/j.fmre.2023.06.008","DOIUrl":"10.1016/j.fmre.2023.06.008","url":null,"abstract":"<div><div>Buses are the most critical part of urban–rural transit systems. However, bus transit services in urban–rural areas face a trade-off between the need for better services and the low profitability resulting from low travel demand. In this study, we show that we can improve the utilization and profitability of urban–rural buses by merging freight transportation with passenger transportation. We developed a mixed-integer program to model and analyze the coordination between freight and passenger transportation in an urban–rural transit system. We then conducted a case study to evaluate the effectiveness of the proposed approach. The numerical results indicate that the consolidation of passenger and freight transportation significantly reduces the operation cost of logistics companies and improves the profit of bus companies. We finally discuss the consolidation’s positive impacts on logistics companies, bus service providers, and society.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 6","pages":"Pages 1603-1612"},"PeriodicalIF":6.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43394317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geobacter-associated prophages confer beneficial effect on dissimilatory reduction of Fe(III) oxides","authors":"Guiqin Yang, Annian Lin, Xian Wu, Canfen Lin, Siyue Zhu, Li Zhuang","doi":"10.1016/j.fmre.2022.10.013","DOIUrl":"10.1016/j.fmre.2022.10.013","url":null,"abstract":"<div><div>The dissimilatory reduction of Fe(III) oxides driven by Fe(III)-reducing bacteria (FRB) is an important biogeochemical process that influences not only iron cycling but also the biogeochemical cycles of carbon, trace metals, nutrients and contaminants. Phages have central roles in modulating the population and activity of FRB, but the mechanism for phage-involved Fe(III) oxide reduction is still unclear. This work used a common FRB, <em>Geobacter soli,</em> to explore the roles and underlying mechanisms of FRB-harboring prophages in the dissimilatory reduction of Fe(III) oxides. Bioinformatic analysis predicted 185 phage-related genes in the <em>G. soli</em> genome, comprising functional prophages that were verified to be induced to form tailed phage particles. Ferrihydrite reduction was facilitated as prophage induction was stimulated and declined as prophage induction was inhibited, which indicated a positive role of <em>G. soli</em>-harboring prophages in Fe(III) oxide reduction. A comparison of gene expression and released phage particles in the cells grown with Fe(III)-citrate and ferrihydrite suggested that microbial ferrihydrite reduction would activate the SOS response and consequently induce the prophages to enter lytic cycles. The prophage-mediated lysis of the subpopulation resulted in an increased release of extracellular DNA and membrane vesicles that were conducive to Fe(III) oxide reduction, which might explain the positive role of prophages in ferrihydrite reduction. In summary, our results revealed the functional roles and underlying mechanisms of FRB-associated prophages in facilitating the dissimilatory reduction of Fe(III) oxides, which will advance our understanding of iron cycling in natural ecosystems.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 6","pages":"Pages 1568-1575"},"PeriodicalIF":6.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43550360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shasha Wang , Wanhong Li , Min Chen , Yihai Cao , Weisi Lu , Xuri Li
{"title":"The retinal pigment epithelium: Functions and roles in ocular diseases","authors":"Shasha Wang , Wanhong Li , Min Chen , Yihai Cao , Weisi Lu , Xuri Li","doi":"10.1016/j.fmre.2023.08.011","DOIUrl":"10.1016/j.fmre.2023.08.011","url":null,"abstract":"<div><div>The retinal pigment epithelium (RPE) between retinal photoreceptors and choroidal capillaries is a single layer of cells that are of critical importance to the eye. RPE cells are derived from the anterior neural plate of neuroectodermal origin. Instructed by specific molecules and signaling pathways, the RPE undergoes formation and maturation to form a functional unit together with photoreceptors. The RPE plays crucial roles in maintaining normal retinal structure and functions, such as phagocytosis; barrier function; transportation of nutrients, ions, and water; resistance to oxidative damage; maintenance of visual cycle; and production of various important factors. RPE cells have an efficient metabolic machinery to provide sufficient energy to the retina. RPE dysfunction or atrophy can lead to many retinopathies, such as age-related macular degeneration and proliferative vitreoretinopathy. Here, we discuss RPE development, functions, and roles in various ocular diseases, and the mechanisms involved. A better understanding of the functions of the RPE and related regulatory pathways may help identify novel or better therapies for the treatment of many blinding diseases.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 6","pages":"Pages 1710-1718"},"PeriodicalIF":6.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139294314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bi-level ramp merging coordination for dense mixed traffic conditions","authors":"","doi":"10.1016/j.fmre.2023.03.015","DOIUrl":"10.1016/j.fmre.2023.03.015","url":null,"abstract":"<div><div>Connected and Autonomous Vehicles (CAVs) hold great potential to improve traffic efficiency, emissions and safety in freeway on-ramp bottlenecks through coordination between mainstream and on-ramp vehicles. This study proposes a bi-level coordination strategy for freeway on-ramp merging of mixed traffic consisting of CAVs and human-driven vehicles (HDVs) to optimize the overall traffic efficiency and safety in congested traffic scenarios at the traffic flow level instead of platoon levels. The macro level employs an optimization model based on fundamental diagrams and shock wave theories to make optimal coordination decisions, including optimal minimum merging platoon size to trigger merging coordination and optimal coordination speed, based on macroscopic traffic state in mainline and ramp (i.e., traffic volume and penetration rates of CAVs). Furthermore, the micro level determines the real platoon size in each merging cycle as per random arrival patterns and designs the coordinated trajectories of the mainline facilitating vehicle and ramp platoon. A receding horizon scheme is implemented to accommodate human drivers’ stochastics as well. The developed bi-level strategy is tested in terms of improving efficiency and safety in a simulation-based case study under various traffic volumes and CAV penetration rates. The results show the proposed coordination addresses the uncertainties in mixed traffic as expected and substantially improves ramp merging operation in terms of merging efficiency and traffic robustness, and reducing collision risk and emissions, especially under high traffic volume conditions.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 992-1008"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43601895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent progress on mechanisms that allocate cellular space to plastids","authors":"","doi":"10.1016/j.fmre.2022.09.004","DOIUrl":"10.1016/j.fmre.2022.09.004","url":null,"abstract":"<div><div>Mechanisms that allocate cellular space to organelles are of fundamental importance to biology but remain poorly understood. A detailed understanding of mechanisms that allocate cellular space to plastids, such as chloroplasts, will lead to high-yielding crops with enhanced nutritional value. The <em>HIGH PIGMENT</em> (<em>HP</em>) genes in tomato contribute to regulated proteolysis and abscisic acid metabolism. The <em>HP1</em> gene was the first gene reported to influence the amount of cellular space occupied by chloroplasts and chromoplasts almost 20 years ago. Recently, our knowledge of mechanisms that allocate cellular space to plastids was enhanced by new information on the influence of cell type on the amount of cellular space occupied by plastids and the identification of new genes that help to allocate cellular space to plastids. These genes encode proteins with unknown and diverse biochemical functions. Several transcription factors were recently reported to regulate the numbers and sizes of chloroplasts in fleshy fruit. If these transcription factors do not induce compensating effects on cell size, they should affect the amount of cellular space occupied by plastids. Although we can now propose more detailed models for the network that allocates cellular space to plastids, many gaps remain in our knowledge of this network and the genes targeted by this network. Nonetheless, these recent breakthroughs provide optimism for future progress in this field.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1167-1170"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46255057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural rejuvenation of a well-aged metallic glass","authors":"","doi":"10.1016/j.fmre.2022.12.004","DOIUrl":"10.1016/j.fmre.2022.12.004","url":null,"abstract":"<div><div>Rejuvenation of glassy structures in general is characterized by the exothermic enthalpy prior to the glass transition. In the present work, we find that this situation is not applicable to a heavily-aged Zr-based metallic glass that rejuvenates by anelastic deformation before yield. Instead, its rejuvenation can be precisely captured by the low-temperature boson heat capacity peak as well as the effective enthalpy change with the glass-to-liquid transition. These results demonstrate that a structurally stable glass could rejuvenate by decreasing mechanical stability of its basin of potential energy landscape, but without changing the basin's energy level. The underlying mechanism points toward the redistribution of the atomic free volume with a constant system-averaged value. We further find that the rejuvenation limit of this glass is its steady-flow state with self-similar inherent structures at both short- and long-time scales. Our findings refresh the understanding of glass rejuvenation and suggest that the boson peak is a better probe for the structural rejuvenation of glasses.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1266-1271"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42051468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}