SGPLane:通过采样网格点为自动驾驶提供高效车道检测

IF 6.3 3区 综合性期刊 Q1 Multidisciplinary
Xuewei Tang, Mengmeng Yang, Kun Jiang, Tuopu Wen, Benny Wijaya, Diange Yang
{"title":"SGPLane:通过采样网格点为自动驾驶提供高效车道检测","authors":"Xuewei Tang,&nbsp;Mengmeng Yang,&nbsp;Kun Jiang,&nbsp;Tuopu Wen,&nbsp;Benny Wijaya,&nbsp;Diange Yang","doi":"10.1016/j.fmre.2023.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>Lane detection is one of the critical tasks for autonomous driving. Earlier works revolved around semantic segmentation and object detection with a special program for lanes. However, most methods still suffer from unstable post-processing algorithms which leads to a gap between camera input and downstream applications. In this paper, we propose a novel detection presentation form for lanes and design a simple network without any complicated post-process. Specifically, we use sampled gird points to express lane lines and construct a network for the special lane format, which is called SGPLane. Therefore, the network learns a regression branch and a confidence branch to realize end-to-end lane detection by setting the threshold confidence value. Our model is validated on the typical dataset and real-world driving scenes. Experiments on lane detection benchmarks show that our method outperforms previous methods with accuracy score of 96.84<span><math><mo>%</mo></math></span> on Tusimple dataset with high FPS and 76.85<span><math><mo>%</mo></math></span> on our real-world dataset.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 4","pages":"Pages 1659-1667"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SGPLane: Efficient lane detection via sampled grid points for autonomous driving\",\"authors\":\"Xuewei Tang,&nbsp;Mengmeng Yang,&nbsp;Kun Jiang,&nbsp;Tuopu Wen,&nbsp;Benny Wijaya,&nbsp;Diange Yang\",\"doi\":\"10.1016/j.fmre.2023.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lane detection is one of the critical tasks for autonomous driving. Earlier works revolved around semantic segmentation and object detection with a special program for lanes. However, most methods still suffer from unstable post-processing algorithms which leads to a gap between camera input and downstream applications. In this paper, we propose a novel detection presentation form for lanes and design a simple network without any complicated post-process. Specifically, we use sampled gird points to express lane lines and construct a network for the special lane format, which is called SGPLane. Therefore, the network learns a regression branch and a confidence branch to realize end-to-end lane detection by setting the threshold confidence value. Our model is validated on the typical dataset and real-world driving scenes. Experiments on lane detection benchmarks show that our method outperforms previous methods with accuracy score of 96.84<span><math><mo>%</mo></math></span> on Tusimple dataset with high FPS and 76.85<span><math><mo>%</mo></math></span> on our real-world dataset.</div></div>\",\"PeriodicalId\":34602,\"journal\":{\"name\":\"Fundamental Research\",\"volume\":\"5 4\",\"pages\":\"Pages 1659-1667\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667325823003576\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325823003576","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

车道检测是自动驾驶的关键任务之一。早期的工作围绕语义分割和目标检测与一个特殊的程序车道。然而,大多数方法仍然存在后处理算法不稳定的问题,导致相机输入和下游应用之间存在差距。在本文中,我们提出了一种新的车道检测表示形式,并设计了一个简单的网络,没有任何复杂的后处理。具体来说,我们使用采样网格点来表示车道线,并构建了一个特殊车道格式的网络,称为SGPLane。因此,网络学习一个回归分支和一个置信分支,通过设置阈值置信值来实现端到端的车道检测。我们的模型在典型数据集和真实驾驶场景上进行了验证。车道检测基准实验表明,该方法在高FPS的Tusimple数据集上的准确率为96.84%,在真实数据集上的准确率为76.85%,优于以往的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SGPLane: Efficient lane detection via sampled grid points for autonomous driving

SGPLane: Efficient lane detection via sampled grid points for autonomous driving
Lane detection is one of the critical tasks for autonomous driving. Earlier works revolved around semantic segmentation and object detection with a special program for lanes. However, most methods still suffer from unstable post-processing algorithms which leads to a gap between camera input and downstream applications. In this paper, we propose a novel detection presentation form for lanes and design a simple network without any complicated post-process. Specifically, we use sampled gird points to express lane lines and construct a network for the special lane format, which is called SGPLane. Therefore, the network learns a regression branch and a confidence branch to realize end-to-end lane detection by setting the threshold confidence value. Our model is validated on the typical dataset and real-world driving scenes. Experiments on lane detection benchmarks show that our method outperforms previous methods with accuracy score of 96.84% on Tusimple dataset with high FPS and 76.85% on our real-world dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信