{"title":"Uncertainty analysis in the design of Type-IV composite pressure vessels for hydrogen storage","authors":"Yao Koutsawa, Lyazid Bouhala","doi":"10.1016/j.jcomc.2024.100544","DOIUrl":"10.1016/j.jcomc.2024.100544","url":null,"abstract":"<div><div>This study focuses on uncertainty quantification (UQ) and global sensitivity analysis (GSA) for the burst pressure (BP) in Type-IV hydrogen composite pressure vessels. Key uncertain parameters, including elastic properties, composite strengths, ply thicknesses, and fiber orientations, were considered. Latin Hypercube Sampling (LHS) efficiently explored the uncertainty space, while Polynomial Chaos Expansion (PCE) modeled BP responses, with Sparse PCE reducing computational costs by selecting influential polynomial terms. Sobol’ indices were used to assess the direct and total influence of the uncertain parameters on the BP variability, guiding optimization in composite pressure vessel design. The development and analysis of the tank model used conventional shell elements, starting from the liner’s inner dimensions and incorporating filament winding via the Abaqus Composite Layup feature. Critical design aspects, such as ply thickness, material properties and fiber orientation, were employed. Failure analysis, driven by internal pressure, evaluated burst pressure in cylindrical and dome sections. Damage progression was assessed using the Hashin failure criterion. The study explored uncertainty propagation in tank designs across four scenarios, including low-pressure 12-ply tanks and high-pressure 52-ply configurations, incorporating 15 and 37 uncertain parameters. Fiber tensile strength and ply thickness emerged as the dominant factors affecting the BP. Fiber strength and ply thickness consistently influenced stiffness and failure mechanisms, emphasizing their critical role in the hydrogen tank design.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"16 ","pages":"Article 100544"},"PeriodicalIF":5.3,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143100877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alia Ruzanna Aziz , Haleimah Al Abdouli , Naresh Kakur , Henrique Ramos , Rafael Savioli , Zhongwei Guan , Rafael Santiago
{"title":"The effects of high strain-rate and temperature on tensile properties of UHMWPE composite laminates","authors":"Alia Ruzanna Aziz , Haleimah Al Abdouli , Naresh Kakur , Henrique Ramos , Rafael Savioli , Zhongwei Guan , Rafael Santiago","doi":"10.1016/j.jcomc.2024.100549","DOIUrl":"10.1016/j.jcomc.2024.100549","url":null,"abstract":"<div><div>The high strain-rate and temperature properties of ultra-high molecular weight polyethylene (UHMWPE) composites are limitedly available in the public domain, primarily due to challenges in gripping the extremely strong material during testing. In this study, tensile tests were performed on UHMWPE laminates over a range of strain-rates from 4.00 × 10<sup>-4</sup> to 2.45 × 10<sup>2</sup> s<sup>-1</sup>, and at different temperatures from -10 to 70 °C using an innovative interchangeable clamping system. The clamp was designed to overcome gripping issues while ensuring consistent boundary conditions across various testing devices. Digital Image Correlation (DIC) technique was employed to capture the displacement fields in situ. The results show that UHMWPE composites demonstrate strain-rate strengthening and temperature-induced softening effects. The strain-rate dependent models indicate a notable difference in strain-rate sensitivity, particularly with tensile strength exhibiting 87 % and 60 % higher sensitivity compared to the tensile modulus and failure strain, respectively. The Weibull statistical model indicates that the scale parameter increases by 17 % with the increase in strain-rate due to transition in failure response from ductile to brittle, which is observed through optical microscopy. In contrast, the scale parameter decreases by 58 % with the increase in temperature. Therefore, it is important to consider the effects of strain-rate and temperature on the mechanical properties for effectively utilizing this material to develop numerical models in various impact-protective applications.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"16 ","pages":"Article 100549"},"PeriodicalIF":5.3,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143100882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparing flax fibre/biopolymer woven composites with carbon fibre-enhanced, partially green alternatives: Mechanical performance versus sustainability","authors":"Olivia H. Margoto, Abbas S. Milani","doi":"10.1016/j.jcomc.2024.100547","DOIUrl":"10.1016/j.jcomc.2024.100547","url":null,"abstract":"<div><div>Natural fibre/biopolymer matrix, known as green/fully sustainable, composites are emerging as alternatives to non-sustainable or partially sustainable composites, while ideally targeting similar material properties. This study first characterizes and compares thermo-mechanical performance of novel green composites made of Flax Fibre (FF) reinforced in thermosetting bioresin options, fabricated via two different manufacturing techniques. Namely, flax fibre-reinforced bioepoxy (Bioepoxy/35 %FF) woven biocomposite was fabricated via vacuum infusion, while FF-reinforced (bio)Polyfurfuryl Alcohol (PFA) woven prepreg was consolidated through vacuum bagging (PFA/45 %FF) as the second option. Additionally, for design comparisons, Carbon Fibre (CF)-PFA (PFA/60 %CF), as well as hybrid FF-CF-based PFA (PFA/45 %FF-15 %CF) samples were fabricated to understand the performance difference between the green composite options versus the latter partially sustainable or hybrid design alternatives. Results demonstrated that, despite their required different manufacturing techniques, Bioepoxy/35 %FF and PFA/60 %FF provided very comparable density, tensile strength, and impact properties. Both biocomposites outperformed the CF-added designs under damping property (by 150 %) at low frequency and specific energy absorption property (by 37 %), thanks to the unique micro-architecture of flax fibre that enhances deformation energy dissipation through inter- and intra-cell walls friction and internal failure mechanisms. However, incorporating 15 % of CF into PFA/FF (i.e. hybrid PFA/45 %FF-15 %CF) increased the tensile strength by 130 % and the tensile modulus by 90 %, while keeping a similar impact energy absorption as the fully flax-based biocomposite options. The fully CF-based PFA (as a least sustainable option among the tested samples) revealed the highest tensile properties, hardness, and thermal stability, clearly highlighting the necessity for formal trade-off analyses during design.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"16 ","pages":"Article 100547"},"PeriodicalIF":5.3,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143101277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redi Bintarto, Anindito Purnowidodo, Djarot B. Darmadi, Teguh Dwi Widodo
{"title":"Effect of natural fibers-epoxy composite as thermal insulation coating on galvalume roof","authors":"Redi Bintarto, Anindito Purnowidodo, Djarot B. Darmadi, Teguh Dwi Widodo","doi":"10.1016/j.jcomc.2024.100543","DOIUrl":"10.1016/j.jcomc.2024.100543","url":null,"abstract":"<div><div>Natural fibre composite coatings are an excellent choice for developing and improving the properties of galvalume roofs. This study examines the impact of natural fibre coatings combined with epoxy on galvalume roofs in reducing the thermal conductivity of the roofing material, which in turn will decrease room temperature. Data were collected by applying a mixture of natural fibres and epoxy on top of galvalume roofs, then measuring the temperature around and inside a small room with dimensions of 50 cm x 50 cm. The roof type was varied using natural fibres, including Pandanus tectorius, Fimbristylis globulosa, pineapple leaf (Ananas comosus), and banana fronds (Musa paradisiaca). In addition to thermal conductivity testing, temperature measurements inside and around the room were conducted, along with temperature tests using a thermal imaging camera. The study shows that adding natural fibre mixed with banana fronds on galvalume roofs can reduce the highest thermal conductivity value by 8.88 W/m °C. Banana fronds also demonstrated the highest capability to lower room temperature by 3.2 °C. The study concludes that natural fibres can reduce thermal conductivity in roofs and lower room temperatures.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100543"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reza Mohammadi , R Akrami , Maher Assaad , Ahmed Imran , Mohammad Fotouhi
{"title":"Comparative analysis of delamination resistance in CFRP laminates interleaved by thermoplastic nanoparticle: Evaluating toughening mechanisms in modes I and II","authors":"Reza Mohammadi , R Akrami , Maher Assaad , Ahmed Imran , Mohammad Fotouhi","doi":"10.1016/j.jcomc.2024.100518","DOIUrl":"10.1016/j.jcomc.2024.100518","url":null,"abstract":"<div><div>The study considers the delamination resistance of carbon/epoxy laminates modified with Thermoplastic Nanoparticles of Polysulfone (TNPs). A new electrospinning nanofiber technique was utilized to convert polysulfone polymer into nanoparticles and uniformly disperse them within the resin. Fracture toughness was evaluated under loading modes I and II. In mode I, the toughness (<em>G<sub>IC</sub></em>) increased significantly from 170 to 328 J/m² with TNPs incorporation. However, mode II showed minimal change, with <em>G<sub>IIC</sub></em> values of 955 J/m² for virgin and 950 J/m² for TNPs-modified specimens. Scanning Electron Microscopy (SEM) was employed to depict the influence of TNPs on damage characteristics and crack propagation patterns. In mode I, crack deviation enhanced toughness as TNPs bypassed the PSU, while in mode II, cracks propagated through TNPs, resulting in particle smearing on the epoxy surface. This highlights TNPs' potential to modify the fracture toughness in mode I loading, but their effect is constrained in mode II loading scenarios.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100518"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An integrated approach for prognosis of Remaining Useful Life for composite structures under in-plane compressive fatigue loading","authors":"Ferda C. Gül, Morteza Moradi, Dimitrios Zarouchas","doi":"10.1016/j.jcomc.2024.100531","DOIUrl":"10.1016/j.jcomc.2024.100531","url":null,"abstract":"<div><div>The prognostic of the Remaining Useful Life (RUL) of composite structures remains a critical challenge as it involves understanding complex degradation behaviors while it is emerging for maintaining the safety and reliability of aerospace structures. As damage accumulation is the primary degradation indicator from the structural integrity point of view, a methodology that enables monitoring the damage mechanisms contributing to the structure's failure may facilitate a reliable and effective RUL prognosis. Therefore, in this study, an integrated methodology has been introduced by targeting the RUL and progressive delamination state via Deep Neural Network (DNN) trained with Guided wave-based damage indicators (GW-DIs). These GW-DIs are obtained via signal processing, Hilbert transform, and Continuous Wavelet Transform. This work uses GW-DIs to train and test the proposed model within two frameworks: one focusing on individual sample analysis to explore path dependency in RUL and delamination prognosis and another on an ensembled dataset to propose a generic model across varying stress scenarios. Results from the study indicate that proposed DNN frameworks are capable of encapsulating fast and slow degradation scenarios to evaluate the RUL prediction with associated delamination progress, which could contribute to ensuring the integrity and longevity of critical life-safe structures.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100531"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lyazid Bouhala, Samet Ozyigit, Abdelghani Laachachi, Ahmed Makradi
{"title":"Multiscale finite element procedure to predict the effective elastic properties of woven composites","authors":"Lyazid Bouhala, Samet Ozyigit, Abdelghani Laachachi, Ahmed Makradi","doi":"10.1016/j.jcomc.2024.100539","DOIUrl":"10.1016/j.jcomc.2024.100539","url":null,"abstract":"<div><div>This paper integrates numerical and experimental approaches to predict the mechanical properties of a woven composite with carbon fiber-based fabrics. Initially, a multiscale modeling approach based on the finite element method ascertained the micro-scale properties of the composite tows, taking into account the effect of voids present in the epoxy resin. Subsequently, a meso-scale model was built and employed to predict the mechanical properties of the composite at this scale. The representative volume elementary (RVE) was generated using TexGen software, and was then imported and used by Abaqus software to compute the effective mechanical properties. Lastly, a macro-scale model of a composite beam was created, simulating a three-point bending test using the effective mechanical properties obtained previously. Concurrently, a physical counterpart of the composite beam was manufactured and subjected to a laboratory three-point bending test, measuring the flexural modulus and many other parameters. A comparison of the two sets of results revealed a high degree of consistency.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100539"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silas Z. Gebrehiwot , Leonardo Espinosa-Leal , Paula Linderbäck , Heikki Remes
{"title":"Experimental investigation and modelling of the nonlinear creep behaviour of additive-manufactured carbon fibre-reinforced polyethylene terephthalate (CF-PET).","authors":"Silas Z. Gebrehiwot , Leonardo Espinosa-Leal , Paula Linderbäck , Heikki Remes","doi":"10.1016/j.jcomc.2024.100530","DOIUrl":"10.1016/j.jcomc.2024.100530","url":null,"abstract":"<div><div>In this paper, the nonlinear creep behaviour of additive-manufactured carbon fibre-reinforced polyethylene terephthalate (CF-PET) is characterised using experimental, theoretical and computational methods. The experimental approach investigates the influence of infill orientations on the creep deformation of the material. For the study, samples at 0°, 45<sup>○</sup>, and 90° infill orientations are produced with 90% infill density using fused filament fabrication (FFF). The infill orientation parameter highly influences the creep behaviour. Increasing the infill orientation from 0° to 90° monotonically improves the creep resistance of the material, which can be explained by orientation of the fibre-matrix reinforcement towards the uniaxial stresses. Surface examinations of creep-ruptured samples via scanning electron microscopy (SEM) reveal that a combination of matrix failure, fibre pull-out, fibre-matrix debonding, inter-layer debonding, and the presence of voids cause the fractures. Based on the experimental data, the primary and secondary creep responses are modelled theoretically and computationally. The theoretical model is based on the dependence of the material's creep on stress and time parameters at the transient and steady state stages. Combined stress and time functions are used to model the creep of the material. Parallelly, two-dimensional (2D) finite element (FE) analyses are made on COMSOL Multiphysics to model the creep computationally. The approach is based on the superposition of Norton's and Garofalo's creep models with predefined time hardening property. The results of the modelling are in good agreement with the experimental findings, showing a maximum of 1.04 % for the theoretical, and 2.9 % for the computational approaches.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100530"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesca Aliberti , Andrea Sorrentino , Barbara Palmieri , Luigi Vertuccio , Giuseppe De Tommaso , Roberto Pantani , Liberata Guadagno , Alfonso Martone
{"title":"Lightweight 3D-printed heaters: design and applicative versatility","authors":"Francesca Aliberti , Andrea Sorrentino , Barbara Palmieri , Luigi Vertuccio , Giuseppe De Tommaso , Roberto Pantani , Liberata Guadagno , Alfonso Martone","doi":"10.1016/j.jcomc.2024.100527","DOIUrl":"10.1016/j.jcomc.2024.100527","url":null,"abstract":"<div><div>This paper proposes a new strategy for designing a 3D-printed heater that can overcome some criticalities of current commercial heater devices for application in the transport and energy sectors. A semiconductive nanocomposite material, acrylonitrile-butadiene-styrene filled with carbon nanotubes (ABS-CNT), was processed via Fused Filaments Fabrication (FFF). The printing was set to favor the current flow along the printing direction, consequently increasing the material's electrical conductivity. 3D-printed heater geometry, equivalent to several electrical resistances (resistive branches) connected in parallel, was optimized by varying the width, thickness, lengths, and number of branches. The adopted approach resulted in a flexible and scalable low-equivalent resistance value heater. Moreover, the optimized heater's flexibility allows it to be integrated into a curved fiberglass composite. Joule heating tests were experimentally performed and theoretically simulated by a multi-physics model. The numerical prediction resulted in good agreement with the experimental data. The results encourage the application of 3D-printed heaters as functional patches for the thermal management of different devices/components, including complex-shape composite structures.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100527"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hussain Gharehbaghi , Maryam Jamshidi , Abdulla Almomani
{"title":"Experimental and numerical investigation of energy absorption in honeycomb structures based on lozenge grid unit cells under various loading angles","authors":"Hussain Gharehbaghi , Maryam Jamshidi , Abdulla Almomani","doi":"10.1016/j.jcomc.2024.100546","DOIUrl":"10.1016/j.jcomc.2024.100546","url":null,"abstract":"<div><div>The present study aims to numerically and experimentally analyze the energy absorption characteristics of honeycomb structures using Lozenge grid unit cells made from continuous glass fibers reinforced polylactic acid (PLA). The design and load-bearing capability of the Lozenge grid was also examined under different orientations angles. The composite grids were also subjected to heat treatment after the tests, at 70 °C, in order to measure its effect on the energy absorption capacity. The Lozenge grid specimens were additively manufactured using fused filament fabrication. The mechanical properties and failure models were described using the VUSDFLD subroutine in order to simulate the Lozenge structure under quasi-static compressive load. The results revealed a good correlation between the numerical and the experimental values. Moreover, Lozenge grid unit cells based structures at 0 or 90° was found with the highest energy absorption capacity. Meanwhile, the least energy absorption was seen at 45°. Overall, the structures had much higher energy absorption capacity at angles closer to 0 and 90°. Outcomes from this work is aimed toward understanding the damage tolerance of Lozenge lattices, and hence the reliability of such new emerging lightweight structures.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100546"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}