Mechanical performance of hybrid double- and step-lap joints in primary metallic aircraft structures: An experimental and numerical approach

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Amir Ekladious , John Wang , Nabil Chowdhury , Wing Kong Chiu
{"title":"Mechanical performance of hybrid double- and step-lap joints in primary metallic aircraft structures: An experimental and numerical approach","authors":"Amir Ekladious ,&nbsp;John Wang ,&nbsp;Nabil Chowdhury ,&nbsp;Wing Kong Chiu","doi":"10.1016/j.jcomc.2024.100554","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid joints, combining adhesive bonding with mechanical fasteners, address the limitations of traditional joining methods in restoring the integrity of aircraft structures. This study evaluates the static strength of double- and step-lap joint configurations, representing repairs in thin and thick metallic aircraft structures, through experimental testing and finite element analysis. Aerospace-grade 7075-T6 aluminium alloy was used for the adherends, with film adhesives and fasteners arranged in typical airframe patterns. The three-dimensional finite element (FE) models incorporated non-linear adhesive properties, fastener preload, contact interactions, and frictional forces. The FE results aligned well with experimental findings, capturing key failure modes and load distributions. Hybrid double-lap joints exhibited strength comparable to bonded joints while mitigating their brittle failures through fasteners that provided additional load-bearing capacity. In thicker step-lap joints, the hybrid configuration nearly restored the parent material’s inherent stiffness, with a moderate strength reduction due to the reduced bond area from the bolt holes, while enhancing elongation capabilities and resistance to localised stress concentrations. Stress analyses highlighted a transition from adhesive-dominated to fastener-dominated load transfer under high loads, demonstrating key interplay between adhesive and mechanical fasteners in hybrid joints. This study presents part of a systematic assessment of the mechanical performance and damage tolerance of the hybrid joining technique, compared with adhesively bonded and mechanically fastened methods, in metallic aircraft structures.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"16 ","pages":"Article 100554"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024001233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid joints, combining adhesive bonding with mechanical fasteners, address the limitations of traditional joining methods in restoring the integrity of aircraft structures. This study evaluates the static strength of double- and step-lap joint configurations, representing repairs in thin and thick metallic aircraft structures, through experimental testing and finite element analysis. Aerospace-grade 7075-T6 aluminium alloy was used for the adherends, with film adhesives and fasteners arranged in typical airframe patterns. The three-dimensional finite element (FE) models incorporated non-linear adhesive properties, fastener preload, contact interactions, and frictional forces. The FE results aligned well with experimental findings, capturing key failure modes and load distributions. Hybrid double-lap joints exhibited strength comparable to bonded joints while mitigating their brittle failures through fasteners that provided additional load-bearing capacity. In thicker step-lap joints, the hybrid configuration nearly restored the parent material’s inherent stiffness, with a moderate strength reduction due to the reduced bond area from the bolt holes, while enhancing elongation capabilities and resistance to localised stress concentrations. Stress analyses highlighted a transition from adhesive-dominated to fastener-dominated load transfer under high loads, demonstrating key interplay between adhesive and mechanical fasteners in hybrid joints. This study presents part of a systematic assessment of the mechanical performance and damage tolerance of the hybrid joining technique, compared with adhesively bonded and mechanically fastened methods, in metallic aircraft structures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信