Composites Part C Open Access最新文献

筛选
英文 中文
Characteristics and evaluation of recycled waste PVCs as a filler in composite structures: Validation through simulation and experimental methods 作为复合材料结构填充物的回收废聚氯乙烯的特性和评估:通过模拟和实验方法进行验证
IF 5.3
Composites Part C Open Access Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100525
Eko Supriyanto , Nugroho Karya Yudha , Alvin Dio Nugroho , Muhammad Akhsin Muflikhun
{"title":"Characteristics and evaluation of recycled waste PVCs as a filler in composite structures: Validation through simulation and experimental methods","authors":"Eko Supriyanto ,&nbsp;Nugroho Karya Yudha ,&nbsp;Alvin Dio Nugroho ,&nbsp;Muhammad Akhsin Muflikhun","doi":"10.1016/j.jcomc.2024.100525","DOIUrl":"10.1016/j.jcomc.2024.100525","url":null,"abstract":"<div><div>Solar Cell as a renewable energy utilization in today's era is considered a suitable choice due to encompass sustainability, environmental preservation, and energy processing efficiency. Solar cells have a finite lifespan that need replacement to maintain energy absorption efficiency. Unfortunately, discarded materials are often underutilized or improperly disposed of. In this study, used photovoltaic solar cell materials are explored as reinforcements in composites. The results showed that 4 % cell filler specimen exhibited highest ultimate tensile strength (UTS) with 51.43 MPa. Followed by Compression strength with 35.38 MPa and flexural strength with 45.54 MPa. SEM/EDS analysis of PV filler specimens revealed the dominance of Carbon (C) and Silica (Si) materials, comprising over 60 %. FT-IR analysis indicated varying compound bond intensities affecting polymerization and material strength under applied forces. Simulation results showed a difference of &lt;2 % when compared to experimental testing outcomes. The current study benefited in environmental conservation efforts through waste reduction and the reuse of recycled materials and are listed in several applications such as in wind turbine, structures, lightweight laminates, automotive structures, and sport equipment.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100525"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The acoustic properties of FDM printed wood/PLA-based composites FDM 印刷木材/聚乳酸基复合材料的声学特性
IF 5.3
Composites Part C Open Access Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100532
K. Vigneshwaran , N. Venkateshwaran , R. Shanthi , Gokul Kannan , B.Rajesh Kumar , Vigneshwaran Shanmugam , Oisik Das
{"title":"The acoustic properties of FDM printed wood/PLA-based composites","authors":"K. Vigneshwaran ,&nbsp;N. Venkateshwaran ,&nbsp;R. Shanthi ,&nbsp;Gokul Kannan ,&nbsp;B.Rajesh Kumar ,&nbsp;Vigneshwaran Shanmugam ,&nbsp;Oisik Das","doi":"10.1016/j.jcomc.2024.100532","DOIUrl":"10.1016/j.jcomc.2024.100532","url":null,"abstract":"<div><div>The acoustic properties of the Fused Deposition Modelling (FDM) printed PLA wood composite was investigated. Initially tensile and flexural of wood PLA composite was studied with respect to varying layer thickness (0.15 mm, 0.20 mm, and 0.30 mm), infill density (30 %, 60 %, and 90 %), and pattern (Layer, Triangle, and Hexagon). The outcomes demonstrated that the specimen produced with a hexagonal pattern, 90% infill density, and 0.2 mm layer thickness had the highest tensile (16 MPa) and flexural strength (16 MPa). Utilizing this optimized parameter, micro-perforated panels were printed and acoustic properties were studied. Five specimens with a 3 mm thickness, various perforation diameters (5 mm, 4 mm, and 3 mm), and architecturally tapered perforations were fabricated. Using the impedance tube approach, the sound transmission loss and sound absorption coefficients were measured. The findings indicate that, in comparison to all the printed specimens, tapered type perforation with an exterior diameter of 5 mm and an internal diameter of 4.7 mm showed highest sound absorption coefficient of 0.60 Hz. A viscous loss is obtained by its convergent hole diameter reduction, which results in sound attenuations and is easily absorbed in the micro-perforated panel. Similar to this, the specimen printed with smaller perforation diameters (3 mm) had a high sound transmission loss of 79 dB. The small diameter of the perforations prevented the passage of sound waves. The current study is anticipated to lay the groundwork for extensive future research on these classes of materials, potentially serving as a catalyst for advancements in FDM based polymeric materials research and development.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100532"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Durability and compressive strength of composite polyolefin fiber-reinforced recycled aggregate concrete: An experimental study 复合聚烯烃纤维增强再生骨料混凝土的耐久性和抗压强度:实验研究
IF 5.3
Composites Part C Open Access Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100533
Mojtaba Gorji Azandariani , Mehdi Vajdian , Mehrdad Javadi , Ali Parvari
{"title":"Durability and compressive strength of composite polyolefin fiber-reinforced recycled aggregate concrete: An experimental study","authors":"Mojtaba Gorji Azandariani ,&nbsp;Mehdi Vajdian ,&nbsp;Mehrdad Javadi ,&nbsp;Ali Parvari","doi":"10.1016/j.jcomc.2024.100533","DOIUrl":"10.1016/j.jcomc.2024.100533","url":null,"abstract":"<div><div>This study investigates of using recycled concrete aggregates along with the reinforcement of polyolefin fibers to augment both the compressive strength and durability of concrete, in alignment with the principles of sustainable development. This study experimentally investigated the compressive strengths and durability of composite polyolefin fiber-reinforced recycled aggregate concrete (PFRRAC) exposed to chloride and acidic environments. For this purpose, 150 cubic concrete samples of 100 × 100 × 100 mm with various combinations of recycled aggregates and polyolefin fibers were made and subjected to axial compressive loading. The results show that the addition of fibers significantly enhances the compressive strength of concrete, with an increase of up to 34.36 % at 5 % fiber content. However, increasing the proportion of recycled aggregates reduces the compressive strength, with reductions ranging from 21.12 % to 43.85 % as the recycled aggregate content rises to 70 %. Moreover, the combination of fibers and recycled aggregates demonstrates potential for improving the sustainability and durability of concrete under challenging environmental conditions, particularly in chloride and acidic environments. In acidic environments, the inclusion of fibers significantly enhances the resistance to strength reduction. Furthermore, the study uncovers that a higher concentration of recycled aggregates exacerbates the reduction in strength in chloride-rich settings, emphasizing the imperative nature of meticulous mix design and material selection. The findings for the integration of even minor quantities of polyolefin fibers to amplify the performance and sustainability of concrete mixtures, especially when utilizing recycled aggregates, thus promoting eco-friendly construction practices.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100533"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Puck 3D-based modeling and validation of progressive failure in instrumented glass fiber-reinforced polypropylene via the split-disk test Puck基于3d的建模和通过裂盘试验验证仪器化玻璃纤维增强聚丙烯的渐进失效
IF 5.3
Composites Part C Open Access Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100534
B. Meemary, D. Vasiukov, M. Lagardère, L. Rozova, S. Chaki
{"title":"Puck 3D-based modeling and validation of progressive failure in instrumented glass fiber-reinforced polypropylene via the split-disk test","authors":"B. Meemary,&nbsp;D. Vasiukov,&nbsp;M. Lagardère,&nbsp;L. Rozova,&nbsp;S. Chaki","doi":"10.1016/j.jcomc.2024.100534","DOIUrl":"10.1016/j.jcomc.2024.100534","url":null,"abstract":"<div><div>This study analyzes the mechanical behavior and damage progression of filament-wound thermoplastic composite rings, focusing on the effects of embedded fiber optic (FO) sensors. Utilizing a split-disk test, the study evaluates both experimental and numerical approaches to examine the impact of FO sensors in glass fiber-reinforced polypropylene composite rings. The split-disk test is employed to measure key mechanical properties such as hoop tensile strength, stiffness and failure strain using strain gauges and 3D Digital Image Correlation (DIC). The research specifically examines two extreme configurations of FO sensor placement: parallel and perpendicular to the reinforced fibers. The objective is to propose sensor integration that minimizes potential negative effects on the material's properties. Both instrumented and non-instrumented samples are analyzed numerically and experimentally. The experimental phase involves detailed mechanical characterization using the split-disk test, while the numerical approach uses a developed UMAT finite element model based on the 3D Puck failure criterion and an element weakening method for progressive failure analysis. The numerical models adopt real microstructural details according to optical microscopic analysis. The study concludes that parallel embedded FO sensors are preferable as they enhance the ultimate strength to failure and avoid creating resin-rich zones near the sensor, thereby improving the overall mechanical performance of the composite rings. The 3D Puck failure criterion combined with the element weakening method provides accurate predictions of fiber failure initiation and growth in the composite rings.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100534"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143180021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced FEA simulation of GFRP and CFRP responses to low velocity impact: Exploring impactor diameter variations and damage mechanisms 对 GFRP 和 CFRP 对低速冲击的响应进行高级有限元分析模拟:探索冲击器直径变化和损坏机制
IF 5.3
Composites Part C Open Access Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100541
Muhamad Luthfi Hakim , Raihan Nafianto , Ariayana Dwiputra Nugraha , Ardi Wiranata , Eko Supriyanto , Gesang Nugroho , Muhammad Akhsin Muflikhun
{"title":"Advanced FEA simulation of GFRP and CFRP responses to low velocity impact: Exploring impactor diameter variations and damage mechanisms","authors":"Muhamad Luthfi Hakim ,&nbsp;Raihan Nafianto ,&nbsp;Ariayana Dwiputra Nugraha ,&nbsp;Ardi Wiranata ,&nbsp;Eko Supriyanto ,&nbsp;Gesang Nugroho ,&nbsp;Muhammad Akhsin Muflikhun","doi":"10.1016/j.jcomc.2024.100541","DOIUrl":"10.1016/j.jcomc.2024.100541","url":null,"abstract":"<div><div>In recent decades, the use of composite materials has experienced a significant increase in various fields. Fiber Reinforced Polymers Composite (FRPC) is one type of composite that is increasingly used due to its versatility and ability to improve product quality. However, FRPC materials have a high susceptibility to Low Velocity Impact (LVI) events, which can cause invisible internal damage such as delamination. LVI occurs when FRPC materials experience a sudden impact with a foreign object at a speed of 1–10 m/s, and can be identified through drop weight impact tests. This research addresses Finite Element Analysis (FEA) simulations to evaluate the mechanical properties of materials due to LVI, following the ASTM D7136 drop weight impact test standard. The variations studied include material types, namely Carbon Fiber Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP), as well as variations in the diameter of the impactor. The results showed that GFRP has more brittle properties than CFRP, which is indicated by the high absorption energy and larger maximum back surface displacement in CFRP. In addition, the damage in GFRP is more significant as CFRP requires a higher initiation force and energy to trigger and propagate the damage. The simulations also show that as the diameter of the impactor increases, the contact force increases, but the impact time is shorter. In contrast, a smaller diameter impactor penetrates the material more easily, with a smaller impact area and lower impact energy after contact occurs.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100541"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane 通过增材制造和生长泡沫聚氨酯制造出带有微石墨填料的混合晶格结构
IF 5.3
Composites Part C Open Access Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100516
Fefria Tanbar , Alvin Dio Nugroho , Ariyana Dwiputra Nugraha , Seno Darmanto , Djarot Widagdo , Gil N.C. Santos , Muhammad Akhsin Muflikhun
{"title":"Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane","authors":"Fefria Tanbar ,&nbsp;Alvin Dio Nugroho ,&nbsp;Ariyana Dwiputra Nugraha ,&nbsp;Seno Darmanto ,&nbsp;Djarot Widagdo ,&nbsp;Gil N.C. Santos ,&nbsp;Muhammad Akhsin Muflikhun","doi":"10.1016/j.jcomc.2024.100516","DOIUrl":"10.1016/j.jcomc.2024.100516","url":null,"abstract":"<div><div>The utilisation of lightweight structures is a common practice across a range of disciplines, including the construction of light steel frames, sandwich panels, and transportation infrastructure, among others. The advantages of lightweight structures include design flexibility, weight reduction, and the sustainability of materials that can be easily recycled. However, these advantages also present significant weaknesses. Compared to solid materials with compact weight, lightweight structures do not have the same characteristics. With the reduction in material weight, the strength of the lightweight structure decreases significantly compared to solid materials. In this study, the lightweight structure was made using additive manufacturing and reinforced with solid Composite Polyurethane Foam reinforced with graphite filler expanded into the lightweight structure. The results showed that in the compression test, the mixture with 2 % graphite filler had the highest value of 2.5 kN. The highest hardness test on the specimen with a 2 % graphite mixture was 19.8 HA. FT-IR testing showed that the carbon bonds from graphite in the 2 % specimen had the highest intensity. The test results showed that the addition of Polyurethane Foam into the structure could enhance material strength effectively without adding significant material weight.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100516"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of repairing heat-damaged RC beams using externally bonded- and near-surface mounted-CFRP composites 使用外部粘接和近表面安装的纤维增强塑料复合材料修复热损伤 RC 梁的综述
IF 5.3
Composites Part C Open Access Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100519
Mousa Shhabat , Mohammad Al-Zu'bi , Mu'tasim Abdel-Jaber
{"title":"A review of repairing heat-damaged RC beams using externally bonded- and near-surface mounted-CFRP composites","authors":"Mousa Shhabat ,&nbsp;Mohammad Al-Zu'bi ,&nbsp;Mu'tasim Abdel-Jaber","doi":"10.1016/j.jcomc.2024.100519","DOIUrl":"10.1016/j.jcomc.2024.100519","url":null,"abstract":"<div><div>Despite numerous investigations conducted in the field and the evident importance of this area of study, comprehensive reviews are still lacking, resulting in a noticeable gap in comprehension. Therefore, this paper presents an in-depth review of repair methods for heat-damaged reinforced concrete (RC) beams utilizing carbon fibre-reinforced polymer (CFRP) composites through both externally bonded reinforcement (EBR) and near-surface mounted (NSM) techniques. The paper meticulously compiles and analyses relevant experimental data, examining flexural and shear repair mechanisms, associated failure modes and factors influencing the repair processes, such as the form, length, spacing, orientation and number of CFRP reinforcement layers, as well as the type of bonding agent. Thus, this review serves as a valuable resource and guide for engineers and researchers seeking to deepen their knowledge in this field.</div><div>The review concludes with recommendations for future research directions aimed at advancing the development and application of repair technologies for heat-damaged RC members.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100519"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterization of UHMWPE composite fabrics treated with bis-diazirine crosslinker and silica/PEG shear thickening fluid 双重氮交联剂和二氧化硅/聚乙二醇剪切增稠液处理超高分子量聚乙烯复合织物的合成与表征
IF 5.3
Composites Part C Open Access Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100540
Mahshid Mahbod , Stefania F. Musolino , Amir Nazemi , Jeremy E. Wulff , Reza Vaziri , Abbas S. Milani
{"title":"Synthesis and characterization of UHMWPE composite fabrics treated with bis-diazirine crosslinker and silica/PEG shear thickening fluid","authors":"Mahshid Mahbod ,&nbsp;Stefania F. Musolino ,&nbsp;Amir Nazemi ,&nbsp;Jeremy E. Wulff ,&nbsp;Reza Vaziri ,&nbsp;Abbas S. Milani","doi":"10.1016/j.jcomc.2024.100540","DOIUrl":"10.1016/j.jcomc.2024.100540","url":null,"abstract":"<div><div>This study focuses on investigating the mechanical behavior of a set of new chemically-treated crosslinked Ultra-High Molecular Weight Polyethylene (UHMWPE) plain-weave fabrics with varying areal densities, and impregnated with a shear thickening fluid (STF). The evaluation of the materials performance included tensile, bias-extension (shear), puncture, and drop tower tests under low rates of loading. For comparison purposes, three different sample groups were considered: untreated fabrics, crosslinked fabrics, and crosslinked fabrics with STF. The STF impregnation was composed of fumed silica nanoparticles (NPs) suspended in a polyethylene glycol (PEG) medium. Both the individual and combined effects of the chemical crosslinking and STF impregnation on the UHMWPE fabrics were explored. Additionally, the impact of strain rate on the tensile and shear behavior of various material groups was examined. The findings revealed that the addition of the crosslinker and shear thickening fluid significantly improves the puncture resistance of the base UHMWPE fabric, by as high as 92 %. The energy absorption and specific energy absorption of the UHMWPE fabric also increased up to 55 % and 16 %, respectively, with the addition of both STF and crosslinker.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100540"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study to unraveling the seismic behavior of CFRP retrofitting composite coupled shear walls for enhanced resilience 揭示 CFRP 加固复合耦合剪力墙抗震行为的实验研究
IF 5.3
Composites Part C Open Access Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100523
Mohammad Meghdadian , Amir R. Masoodi , Mansour Ghalehnovi
{"title":"Experimental study to unraveling the seismic behavior of CFRP retrofitting composite coupled shear walls for enhanced resilience","authors":"Mohammad Meghdadian ,&nbsp;Amir R. Masoodi ,&nbsp;Mansour Ghalehnovi","doi":"10.1016/j.jcomc.2024.100523","DOIUrl":"10.1016/j.jcomc.2024.100523","url":null,"abstract":"<div><div>This study focuses on the empirical examination of the nonlinear seismic performance of carbon fiber-reinforced polymer (CFRP)-strengthened composite coupled reinforced concrete (RC) shear walls. The experimental setup involves testing the structure in two distinct states, wherein CFRP sheets are utilized for retrofitting and reinforcement. In the initial phase, three samples undergo reinforcement utilizing distinct patterns of CFRP sheets. In the subsequent stage, an additional trio of specimens is fabricated and tested without the application of CFRP sheets. Subsequently, all structures are exposed to a load equivalent to 60 % of their flexural capacity. Following this, the tested specimens undergo retrofitting with CFRP sheets, utilizing the same patterns as in the initial phase. The retrofitted composite coupled shear walls are then subjected to retesting. The principal aim of CFRP retrofitting is to amplify the flexural and shear capacities of the specimens, empowering them to endure heightened seismic loads in comparison to their original configurations. This research contributes by evaluating ductility, ultimate strength, energy dissipation, and construction costs associated with composite coupled steel plate-concrete shear walls. All specimens underwent cyclic loading in accordance with the ATC-24 guidelines [1], which provide standard protocols for testing the cyclic performance of structural components. These guidelines, outline procedures for simulating seismic loading conditions in laboratory settings to evaluate the performance of structural systems under cyclic loading. Finally, a parametric study explores the impact of CFRP sheets and their adhesion patterns on the seismic behavior of composite coupled shear walls. The selection of the optimal retrofitting scheme considers the construction cost of each specimen based on the total area of CFRP sheets utilized.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100523"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Damage detection in composite and plastic thin-wall beams by operational modal analysis: An experimental assessment 通过运行模态分析检测复合材料和塑料薄壁梁的损伤:实验评估
IF 5.3
Composites Part C Open Access Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100542
Josué Pacheco-Chérrez , Manuel Aenlle , Pelayo Fernández , Carlos Colchero , Oliver Probst
{"title":"Damage detection in composite and plastic thin-wall beams by operational modal analysis: An experimental assessment","authors":"Josué Pacheco-Chérrez ,&nbsp;Manuel Aenlle ,&nbsp;Pelayo Fernández ,&nbsp;Carlos Colchero ,&nbsp;Oliver Probst","doi":"10.1016/j.jcomc.2024.100542","DOIUrl":"10.1016/j.jcomc.2024.100542","url":null,"abstract":"<div><div>The detection and localization of different damage features in thin-wall beam composite and plastic beams using Operational Modal Analysis (OMA) has been demonstrated experimentally. The detection of small damage features using modal analysis techniques is an emerging field, with few experimental OMA-based assessments having been reported so far. The proposed method is based on OMA combined with Stochastic Subspace Identification (SSI) and the enhancement of damage features by Continuous Wavelet Transforms (CWT). A composite thin-wall beam (CTWB) structure in two measurement configurations and a PVC tube in a free-free configuration have been tested. Damage features detected include extra masses attached to the beam, with a range from 9.5 % to 14.0 % of the beam mass, and small cracks perpendicular to the beam axis with lengths of about 4 % of the perimeter of the cross section. Calibration curves relating the strength of the damage signal with the weight of the attached masses have been constructed. Two simultaneous cracks or two masses could be detected as well. The quantification and localization of damage feature along the beam was possible through the use of Gaussian fit surface applied to damage maps obtained with the CWT technique. The width of the Gaussian fit curve was of the order of the distance between accelerometers, but the accuracy, estimated to be around 3 % of the beam length, was found to have sub-grid resolution. The proposed method was shown to work reliably with a relatively coarse measurement grid, potentially allowing for cost-effective Structural Health Monitoring (SHM) approaches.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100542"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信