Mingqiang Zhang , Yalin Ding , Guoqin Yuan , Hongwen Zhang , Lin Sun , Jianjun Sun , Yaobin Li
{"title":"Prediction of quasi-static mechanical properties of flexible porous metal rubber structures in ultra-wide temperature range","authors":"Mingqiang Zhang , Yalin Ding , Guoqin Yuan , Hongwen Zhang , Lin Sun , Jianjun Sun , Yaobin Li","doi":"10.1016/j.jcomc.2024.100509","DOIUrl":"10.1016/j.jcomc.2024.100509","url":null,"abstract":"<div><p>Metal rubber, which has the advantages of low density, strong environmental adaptability, and excellent design flexibility, is widely applied in manufacturing industries such as the aerospace, shipping, and automotive industries. Based on the research object of flexible porous metal rubber (FPMR) structures made of high-temperature elastic alloys, this study established a constitutive model for the quasi-static mechanical properties of FPMR structure under ultra-wide temperature range conditions. Firstly, the forming mechanism and the influencing factors of the static stiffness properties of the FPMR micro-structure were analyzed. Then, the theoretical model of the FPMR micro-element spring was established by applying the cylindrical spiral compression spring stiffness theory, and the theoretical model was corrected based on the large deformation theory and numerical analysis methods. A comparative analysis was carried out through the corrected theoretical model and the test results of different test samples. And the results show that the corrected theoretical model can comprehensively reflect the nonlinear quasi-static stiffness characteristics of the FPMR structure in an ultra-wide temperature range. More importantly, by comparison with the prediction models proposed by other scholars, it is proved that the model proposed in this paper has higher prediction accuracy and the goodness of fit <em>R<sup>2</sup></em> is closer to 1, which provides a theoretical basis for the application of metal rubber in flexible support structures under ultra-high temperature environments.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100509"},"PeriodicalIF":5.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000781/pdfft?md5=6347ec251943b5cd57a1c07454875691&pid=1-s2.0-S2666682024000781-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integration of ceramic matrix systems into coreless filament wound fiber-reinforced composite lightweight structures for lunar resource utilization","authors":"Pascal Mindermann , Martin-Uwe Witt , Armaghan Samie , Sathis Kumar Selvarayan , Götz T. Gresser","doi":"10.1016/j.jcomc.2024.100508","DOIUrl":"10.1016/j.jcomc.2024.100508","url":null,"abstract":"<div><p>Integrating ceramic matrix systems into coreless filament winding (CFW) enables the creation of sustainable, heat- and fire-resistant fiber composite lightweight structures. This study introduces a chemically bonded ceramic matrix system based on metakaolin, tailored for space applications utilizing lunar resources. The system employs acidic activation for processing with basalt/mineral fibers and alkaline activation for carbon fibers composites. Initially, the constituents of the matrix system are outlined, alongside potential synthesis pathways from lunar resources. Various formulations, incorporating different additives, are proposed. Through coupon compression testing, the most performative formulations for each activation type are selected for further investigation. The addition of zirconium silicate resulted in a higher compressive strength without significantly affecting the compressive modulus. The study then proceeds to experimentally characterize the matrix system’s viscosity. Subsequently, the processability of the proposed matrix system with CFW is demonstrated through the fabrication of generic medium-size lattice samples. Finally, these samples undergo destructive structural testing in compression. While emphasizing material development aspects, the investigation concludes that the feasibility of the proposed concept is validated through the successful fabrication and testing of generic CFW samples, affirming its potential use in space-related structural applications.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100508"},"PeriodicalIF":5.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266668202400077X/pdfft?md5=22e638151a6ce2551862ba1f55ebb9c7&pid=1-s2.0-S266668202400077X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pedro Bührer Santana , A.J.M. Ferreira , Herbert Martins Gomes , Volnei Tita
{"title":"A nonlinear finite element analysis of laminated shells with a damage model","authors":"Pedro Bührer Santana , A.J.M. Ferreira , Herbert Martins Gomes , Volnei Tita","doi":"10.1016/j.jcomc.2024.100505","DOIUrl":"10.1016/j.jcomc.2024.100505","url":null,"abstract":"<div><p>This paper presents a study on the development and validation of a nonlinear finite element model for laminated composite shells, that considers a first-order shear deformation theory (FSDT) and an explicit through-thickness integration. The model integrates a meso-scale damage analysis that considers progressive matrix and fiber failures. The model is compared with envelopes of experimental curves extracted from 3-point bending test coupons and shows accurate predictions.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100505"},"PeriodicalIF":5.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000744/pdfft?md5=a082fcd5e84195e94103e6359a2b359c&pid=1-s2.0-S2666682024000744-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miriam Battaglia , Valerio Acanfora , Aniello Riccio
{"title":"UAV Wing leading edge crashworthiness behaviour under bird strike events: The added value of CF/PA additive solutions versus traditional metallic wing structures","authors":"Miriam Battaglia , Valerio Acanfora , Aniello Riccio","doi":"10.1016/j.jcomc.2024.100506","DOIUrl":"10.1016/j.jcomc.2024.100506","url":null,"abstract":"<div><p>In recent years, an increasing interest in innovative solutions design of aircraft structural components has been raised through both research and industrial fields, aimed at optimising weight and enhancing the ability to withstand both static and dynamic loads. This study compares the structural response to a bird strike phenomenon of a vertical tail of a UAV in standard metallic configuration with the one obtained from an innovative solution, equal in volume but with an internally designed architecture for an additive approach and manufactured by employing a carbon fibre reinforced filament engineered for metal replacement applications (carbon fibre, CF/polyamide, PA). The additive solution proposes the use of a 10 % infill and a lattice structure that completely replaces the traditional aircraft structure concept. This approach leads to a significant weight reduction, approximately 45 % compared to the traditional metallic configuration. The investigation was conducted through explicit numerical simulations considering different impact angles. The numerical model of the bird strike has been assessed by numerical-experimental comparison, simulating the impact of a bird with a flat plate. For this study, the Coupled Eulerian-Lagrangian (CEL) approach has been adopted to perform the simulation. The results were compared in terms of stress distribution, failure analysis, displacements, and energy-time and force-time diagrams. The work demonstrated that using innovative manufacturing processes, such as additive manufacturing, can significantly improve the bird strike resistance of aerospace structures. This improvement is achieved though the production of lighter, structurally collaborative geometries, by reducing the load transferred to the rest of the UAV by about 47 % and decreasing the displacement on the impact area by 53 %.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100506"},"PeriodicalIF":5.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000756/pdfft?md5=05c7316ddf0650855e58808c196e41d9&pid=1-s2.0-S2666682024000756-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pablo Vitale , Joaquin Montero , Gaston Francucci , Helmut Rapp , Kristin Paetzold , Ariel Stocchi , Philipp Höfer
{"title":"Compressive behavior of Body-Centered-Cubic (BCC)-like ultra-lightweight Carbon Fiber Reinforced Polymer (CFRP) lattice-based sandwich structures","authors":"Pablo Vitale , Joaquin Montero , Gaston Francucci , Helmut Rapp , Kristin Paetzold , Ariel Stocchi , Philipp Höfer","doi":"10.1016/j.jcomc.2024.100507","DOIUrl":"10.1016/j.jcomc.2024.100507","url":null,"abstract":"<div><p>3D lattice structures comprise a connected network of segments that allow positioning of the base material where needed while maintaining an open-cell characteristic. These structures represent an ideal lightweight core material for high-performance sandwich panels. This work presents, for the first time, the performance of lattice-based cores fabricated via indirect additive manufacturing using pultruded Carbon Fiber Reinforced Polymer (CFRP) rods. The CFRP sandwich panels were tested under out-of-plane compression, and their compressive properties and failure modes were predicted via analytical and FE analyses, later contrasted with mechanical testing. Finally, the study compares favorably with similar core materials found in the literature.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100507"},"PeriodicalIF":5.3,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000768/pdfft?md5=7cbe2febd4c90f64d4c63e7ebcce0973&pid=1-s2.0-S2666682024000768-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Additive manufacturing of wood composite parts by individual layer fabrication - influence of process parameters on product properties","authors":"Birger Buschmann , Klaudius Henke , Carsten Asshoff , Daniel Talke , Mai-Khanh Talke , Frauke Bunzel","doi":"10.1016/j.jcomc.2024.100504","DOIUrl":"10.1016/j.jcomc.2024.100504","url":null,"abstract":"<div><p>Individual Layer Fabrication (ILF) is a novel additive manufacturing process that was developed to create objects with high wood content and high mechanical strength. Here, thin and individually contoured wood composite panels are created via Binder Jetting and subsequent mechanical pressing. Like in Sheet Lamination, these panels are then laminated onto each other to create a three-dimensional object. With wood contents (more than 85 mass percent) and mechanical properties (more than 30 MPa flexural strength) on par with other engineered wood products like particle boards and plywood, the produced objects are well suited for the construction and furniture industry. To gain a deeper understanding of the process, the influence of processing parameters on the geometric and mechanical properties of the finished objects were investigated. As process parameters the amounts of adhesive and the pressing forces for both panel production and lamination were selected. It was discovered that the interaction between the amount of adhesive and the pressure used to produce the panels is highly relevant for the geometric properties. The three core mechanisms that are responsible for the mechanical properties of produced parts were identified and can be ranked in the following order: 1) the amount of adhesive in the panels binding the particles, 2) the density of the panels, 3) the amount of adhesive for laminating the panels.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100504"},"PeriodicalIF":5.3,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000732/pdfft?md5=e395aefa38ab67d9eb36b87d2244e01e&pid=1-s2.0-S2666682024000732-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fused deposition modeling of polyethylene (PE): Printability assessment for low-density polyethylene and polystyrene blends","authors":"Ayman Karaki , Eyad Masad , Marwan Khraisheh , Mabrouk Ouederni","doi":"10.1016/j.jcomc.2024.100499","DOIUrl":"10.1016/j.jcomc.2024.100499","url":null,"abstract":"<div><p>There is a global emphasis on recycling and reuse of plastic waste. Despite constituting over one-third of the world's annual plastic production, only 10 % of polyethylene is recycled. This study explores the use of fused deposition modeling (FDM) to enable the recycling of industrial waste of low-density polyethylene (LDPE) blended with expanded polystyrene (EPS). Two LDPE/EPS ratios (50/50 and 70/30) were investigated, and two types of styrene-ethylene-butylene-styrene (SEBS) rubber were incorporated as compatibilizers. The mechanical, rheological, thermal, and morphological properties of these blends were analyzed to assess their printability. Results indicate that the use of SEBS enhances the mechanical properties, thermal stability, and morphological uniformity of the blends. Particularly, malleated SEBS exhibited superior compatibilizing ability, fostering strong interactions at the LDPE/EPS interface. The best blend, based on printability assessments, was the 50/50 LDPE/EPS ratio with a 5 wt% malleated SEBS. Consequently, this blend was extruded into feedstock filaments, and it was successfully printed via FDM. The proposed blends are anticipated to perform effectively in various applications and serve as a foundation for future development of wear-resistant materials. The outcomes of this study present a novel approach for upcycling LDPE waste while promoting sustainable FDM practices.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100499"},"PeriodicalIF":5.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000689/pdfft?md5=079a8824b3ae61973cb0bdd472ce7192&pid=1-s2.0-S2666682024000689-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data-driven constitutive models for brittle solids displaying progressive anisotropic damage","authors":"Weijian Ge, Vito L Tagarielli","doi":"10.1016/j.jcomc.2024.100501","DOIUrl":"10.1016/j.jcomc.2024.100501","url":null,"abstract":"<div><p>We propose and demonstrate a computational framework to obtain data-driven surrogate constitutive models capturing the mechanical response of anisotropic brittle solids displaying progressive anisotropic damage. We train the constitutive models on data obtained from the analysis of a volume element of a material of interest; the data is generated by a constitutive model for braided composites, displaying a complex anisotropic damage evolution progressively transitioning from transversely isotropic to orthotropic. Training involves imposing six-dimensional random strain histories on the physical model and recording the histories of stress, strain and homogenised stiffness matrix of the material, obtained by a set of linear perturbation analyses. Supervised machine learning and dimensionality reduction are applied to the data and a structure for a surrogate model is proposed. The surrogate predicts the evolution of the stiffness of the solid consequent to an arbitrary imposed six-dimensional strain increment, thereby calculating the corresponding increment in stress. The model displays high accuracy and is able to reproduce the homogenised material's response via simple neural networks.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100501"},"PeriodicalIF":5.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000707/pdfft?md5=1e4a9221a3a6f168ae6efc063767f0fb&pid=1-s2.0-S2666682024000707-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wajih Ahmed Khan , Muhammad Umar Anjum , Harris Khan , Amir Hamza , Hamid Jabbar , Tayyab Zafar , Ali R. Ansari , Raheel Nawaz
{"title":"Application of robotic manipulation for carbon fiber reinforced polymers manufacturing- A survey","authors":"Wajih Ahmed Khan , Muhammad Umar Anjum , Harris Khan , Amir Hamza , Hamid Jabbar , Tayyab Zafar , Ali R. Ansari , Raheel Nawaz","doi":"10.1016/j.jcomc.2024.100503","DOIUrl":"10.1016/j.jcomc.2024.100503","url":null,"abstract":"<div><p>With the rapid advancement in the manufacturing industry, there has been a massive rise in the demand for products made of fiber reinforced polymer composites as they have high stiffness and strength to weight ratios. They are widely used in the manufacturing of parts in aerospace and automobile industry. The manual draping process of prepreg on the mold is time intensive and requires a highly skilled worker to perform the task. Various techniques have been designed to automate the process of composite parts manufacturing using automated fiber placement (AFP), automated tape laying (ATL) and automated plies layup. These methods use robots equipped with an end effector designed to drape the prepreg. The system utilizes both single and multi-robot cells for the process of composites manufacturing. The aim of this paper is to review the techniques and strategies employed for conforming and grasping of prepreg. The paper will also delve into the process parameters that influence the composites manufacturing process and investigate the impact of correct and inaccurate selection of process parameters on the final product. The paper will also discuss the limitations, challenges and future prospects for automated composite part manufacturing.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100503"},"PeriodicalIF":5.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000720/pdfft?md5=e50034e1dd532ad2ff1dadcecd253198&pid=1-s2.0-S2666682024000720-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cristiano Veloso , Carlos Mota , Fernando Cunha , José Sousa , Raul Fangueiro
{"title":"Analytical design of in-plane and through-the-thickness auxetic composite laminates","authors":"Cristiano Veloso , Carlos Mota , Fernando Cunha , José Sousa , Raul Fangueiro","doi":"10.1016/j.jcomc.2024.100500","DOIUrl":"10.1016/j.jcomc.2024.100500","url":null,"abstract":"<div><p>Auxetic composite laminates, i.e. laminates with a NPR (Negative Poisson’s Ratio), are regarded as a promising solution to combat LVI (Low-velocity impact) delamination BVID (Barely visible internal damage) and ensuing property degradation, a cause for concern in aerospace components, mainly inflicted by fortuitous accidents during handling operations. In order to potentiate the auxetic effect through the minimization of the Poisson’s ratio, a thorough analysis of material properties and stacking sequences is required, as only a restricted domain of combinations can generate the desired effect, either in an IP (In-plane) or TTT (Through-the-thickness) configuration. This paper focuses on a MATLAB program developed for IP and TTT auxetic laminate design, based on the CLT (Classical Lamination Theory). Cases studies on NPR domain definition of C/E (Carbon/epoxy), G/E (Glass/epoxy) and hybrid C-G/E (Carbon-Glass/epoxy) laminates are presented. Moreover, the influence of fibre volume fraction on C/E and G/E laminates is analysed.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100500"},"PeriodicalIF":5.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000690/pdfft?md5=381f52920d1aaa35fffcc77b51058b45&pid=1-s2.0-S2666682024000690-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}