Puck 3D-based modeling and validation of progressive failure in instrumented glass fiber-reinforced polypropylene via the split-disk test

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
B. Meemary, D. Vasiukov, M. Lagardère, L. Rozova, S. Chaki
{"title":"Puck 3D-based modeling and validation of progressive failure in instrumented glass fiber-reinforced polypropylene via the split-disk test","authors":"B. Meemary,&nbsp;D. Vasiukov,&nbsp;M. Lagardère,&nbsp;L. Rozova,&nbsp;S. Chaki","doi":"10.1016/j.jcomc.2024.100534","DOIUrl":null,"url":null,"abstract":"<div><div>This study analyzes the mechanical behavior and damage progression of filament-wound thermoplastic composite rings, focusing on the effects of embedded fiber optic (FO) sensors. Utilizing a split-disk test, the study evaluates both experimental and numerical approaches to examine the impact of FO sensors in glass fiber-reinforced polypropylene composite rings. The split-disk test is employed to measure key mechanical properties such as hoop tensile strength, stiffness and failure strain using strain gauges and 3D Digital Image Correlation (DIC). The research specifically examines two extreme configurations of FO sensor placement: parallel and perpendicular to the reinforced fibers. The objective is to propose sensor integration that minimizes potential negative effects on the material's properties. Both instrumented and non-instrumented samples are analyzed numerically and experimentally. The experimental phase involves detailed mechanical characterization using the split-disk test, while the numerical approach uses a developed UMAT finite element model based on the 3D Puck failure criterion and an element weakening method for progressive failure analysis. The numerical models adopt real microstructural details according to optical microscopic analysis. The study concludes that parallel embedded FO sensors are preferable as they enhance the ultimate strength to failure and avoid creating resin-rich zones near the sensor, thereby improving the overall mechanical performance of the composite rings. The 3D Puck failure criterion combined with the element weakening method provides accurate predictions of fiber failure initiation and growth in the composite rings.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100534"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024001038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This study analyzes the mechanical behavior and damage progression of filament-wound thermoplastic composite rings, focusing on the effects of embedded fiber optic (FO) sensors. Utilizing a split-disk test, the study evaluates both experimental and numerical approaches to examine the impact of FO sensors in glass fiber-reinforced polypropylene composite rings. The split-disk test is employed to measure key mechanical properties such as hoop tensile strength, stiffness and failure strain using strain gauges and 3D Digital Image Correlation (DIC). The research specifically examines two extreme configurations of FO sensor placement: parallel and perpendicular to the reinforced fibers. The objective is to propose sensor integration that minimizes potential negative effects on the material's properties. Both instrumented and non-instrumented samples are analyzed numerically and experimentally. The experimental phase involves detailed mechanical characterization using the split-disk test, while the numerical approach uses a developed UMAT finite element model based on the 3D Puck failure criterion and an element weakening method for progressive failure analysis. The numerical models adopt real microstructural details according to optical microscopic analysis. The study concludes that parallel embedded FO sensors are preferable as they enhance the ultimate strength to failure and avoid creating resin-rich zones near the sensor, thereby improving the overall mechanical performance of the composite rings. The 3D Puck failure criterion combined with the element weakening method provides accurate predictions of fiber failure initiation and growth in the composite rings.
Puck基于3d的建模和通过裂盘试验验证仪器化玻璃纤维增强聚丙烯的渐进失效
本研究分析了热塑性复合材料长丝缠绕环的力学行为和损伤进展,重点研究了嵌入式光纤传感器对热塑性复合材料环的影响。利用裂盘试验,该研究评估了实验和数值方法,以检查FO传感器在玻璃纤维增强聚丙烯复合材料环中的影响。裂盘试验采用应变片和三维数字图像相关(DIC)技术测量了环向抗拉强度、刚度和破坏应变等关键力学性能。该研究特别检查了FO传感器放置的两种极端配置:平行和垂直于增强纤维。目标是提出传感器集成,以最大限度地减少对材料性能的潜在负面影响。对仪器和非仪器样品进行了数值和实验分析。实验阶段包括使用裂盘试验进行详细的力学表征,而数值方法使用基于3D Puck破坏准则的UMAT有限元模型和用于渐进破坏分析的单元弱化方法。根据光学显微分析,数值模型采用了真实的微观结构细节。研究得出结论,并联嵌入式FO传感器更可取,因为它们提高了极限强度,避免在传感器附近产生富含树脂的区域,从而提高了复合环的整体机械性能。结合单元弱化法的三维Puck破坏准则可以准确预测复合材料环中纤维的破坏起始和生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信