Flexural strengthening and rehabilitation of continuous reinforced concrete beams using BFRP sheets: Experimental and analytical techniques

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Mu'tasim Abdel-Jaber , Rawand Al-Nsour , Ahmed Ashteyat
{"title":"Flexural strengthening and rehabilitation of continuous reinforced concrete beams using BFRP sheets: Experimental and analytical techniques","authors":"Mu'tasim Abdel-Jaber ,&nbsp;Rawand Al-Nsour ,&nbsp;Ahmed Ashteyat","doi":"10.1016/j.jcomc.2024.100556","DOIUrl":null,"url":null,"abstract":"<div><div>The introduction of Basalt Fiber-Reinforced Polymer (BFRP) materials marks a significant step forward in sustainable construction practices. This study investigates the use of externally bonded low and high-dense BFRP sheets to enhance the flexural strength and durability of reinforced concrete (RC) beams with compressive strengths of 20 and 32 MPa. Analyzing a total of ten two-span RC beams, each with a length of four meters, the study included four beams that were strengthened using low-dense sheets and four beams that were rehabilitated with high-dense sheets after being subjected to 70 % of their ultimate load capacity. Additionally, two beams were used as control samples to compare the effects of the strengthening and rehabilitation techniques. The research demonstrates the effectiveness of BFRP in boosting structural integrity. The findings revealed substantial improvements in flexural strength, with increases ranging from 22.6 % to 80 %, along with enhanced ductility. These results were closely aligned with predictions made using Finite Element Modeling, underscoring the potential of BFRP sheets in advancing the performance and longevity of RC beams. Theoretical outcomes agreed well with experimental findings, in alignment with the ACI 440.2R-08 guidelines.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"16 ","pages":"Article 100556"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024001257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The introduction of Basalt Fiber-Reinforced Polymer (BFRP) materials marks a significant step forward in sustainable construction practices. This study investigates the use of externally bonded low and high-dense BFRP sheets to enhance the flexural strength and durability of reinforced concrete (RC) beams with compressive strengths of 20 and 32 MPa. Analyzing a total of ten two-span RC beams, each with a length of four meters, the study included four beams that were strengthened using low-dense sheets and four beams that were rehabilitated with high-dense sheets after being subjected to 70 % of their ultimate load capacity. Additionally, two beams were used as control samples to compare the effects of the strengthening and rehabilitation techniques. The research demonstrates the effectiveness of BFRP in boosting structural integrity. The findings revealed substantial improvements in flexural strength, with increases ranging from 22.6 % to 80 %, along with enhanced ductility. These results were closely aligned with predictions made using Finite Element Modeling, underscoring the potential of BFRP sheets in advancing the performance and longevity of RC beams. Theoretical outcomes agreed well with experimental findings, in alignment with the ACI 440.2R-08 guidelines.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信