Environmental Science and Ecotechnology最新文献

筛选
英文 中文
Ecological filter walls for efficient pollutant removal from urban surface water 高效去除城市地表水污染物的生态过滤墙
IF 12.6 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-03-26 DOI: 10.1016/j.ese.2024.100418
Menglong Liao , Ye Qiu , Yan Tian , Zeng Li , Tongtong liu , Xinlei Feng , Guohong Liu , Yujie Feng
{"title":"Ecological filter walls for efficient pollutant removal from urban surface water","authors":"Menglong Liao ,&nbsp;Ye Qiu ,&nbsp;Yan Tian ,&nbsp;Zeng Li ,&nbsp;Tongtong liu ,&nbsp;Xinlei Feng ,&nbsp;Guohong Liu ,&nbsp;Yujie Feng","doi":"10.1016/j.ese.2024.100418","DOIUrl":"10.1016/j.ese.2024.100418","url":null,"abstract":"<div><p>Urban surface water pollution poses significant threats to aquatic ecosystems and human health. Conventional nitrogen removal technologies used in urban surface water exhibit drawbacks such as high consumption of carbon sources, high sludge production, and focus on dissolved oxygen (DO) concentration while neglecting the impact of DO gradients. Here, we show an ecological filter walls (EFW) that removes pollutants from urban surface water. We utilized a polymer-based three-dimensional matrix to enhance water permeability, and emergent plants were integrated into the EFW to facilitate biofilm formation. We observed that varying aeration intensities within the EFW's aerobic zone resulted in distinct DO gradients, with an optimal DO control at 3.19 ± 0.2 mg L<sup>−1</sup> achieving superior nitrogen removal efficiencies. Specifically, the removal efficiencies of total organic carbon, total nitrogen, ammonia, and nitrate were 79.4%, 81.3%, 99.6%, and 79.1%, respectively. Microbial community analysis under a 3 mg L<sup>−1</sup> DO condition revealed a shift in microbial composition and abundance, with genera such as <em>Dechloromonas</em>, <em>Acinetobacter</em>, unclassified_f__Comamonadaceae, <em>SM</em>1<em>A</em>02 and <em>Pseudomonas</em> playing pivotal roles in carbon and nitrogen elimination. Notably, the EFW facilitated shortcut nitrification-denitrification processes, predominantly contributing to nitrogen removal. Considering low manufacturing cost, flexible application, small artificial trace, and good pollutant removal ability, EFW has promising potential as an innovative approach to urban surface water treatment.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":12.6,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000322/pdfft?md5=e75f43df3d21068cf23cb1dd55bac951&pid=1-s2.0-S2666498424000322-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140398950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut pathobiome mediates behavioral and developmental disorders in biotoxin-exposed amphibians 肠道病原生物群介导暴露于生物毒素的两栖动物的行为和发育障碍
IF 12.6 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-03-21 DOI: 10.1016/j.ese.2024.100415
Qianqian Pan , Tianxing Lv , Haorong Xu , Hongda Fang , Meng Li , Jiaping Zhu , Yue Wang , Xiaoyan Fan , Ping Xu , Xiuguo Wang , Qiangwei Wang , Haruna Matsumoto , Mengcen Wang
{"title":"Gut pathobiome mediates behavioral and developmental disorders in biotoxin-exposed amphibians","authors":"Qianqian Pan ,&nbsp;Tianxing Lv ,&nbsp;Haorong Xu ,&nbsp;Hongda Fang ,&nbsp;Meng Li ,&nbsp;Jiaping Zhu ,&nbsp;Yue Wang ,&nbsp;Xiaoyan Fan ,&nbsp;Ping Xu ,&nbsp;Xiuguo Wang ,&nbsp;Qiangwei Wang ,&nbsp;Haruna Matsumoto ,&nbsp;Mengcen Wang","doi":"10.1016/j.ese.2024.100415","DOIUrl":"10.1016/j.ese.2024.100415","url":null,"abstract":"<div><p>Emerging evidence suggests a link between alterations in the gut microbiome and adverse health outcomes in the hosts exposed to environmental pollutants. Yet, the causal relationships and underlying mechanisms remain largely undefined. Here we show that exposure to biotoxins can affect gut pathobiome assembly in amphibians, which in turn triggers the toxicity of exogenous pollutants. We used <em>Xenopus laevis</em> as a model in this study. Tadpoles exposed to tropolone demonstrated notable developmental impairments and increased locomotor activity, with a reduction in total length by 4.37%–22.48% and an increase in swimming speed by 49.96%–84.83%. <em>Fusobacterium</em> and <em>Cetobacterium</em> are predominant taxa in the gut pathobiome of tropolone-exposed tadpoles. The tropolone-induced developmental and behavioral disorders in the host were mediated by assembly of the gut pathobiome, leading to transcriptome reprogramming. This study not only advances our understanding of the intricate interactions between environmental pollutants, the gut pathobiome, and host health but also emphasizes the potential of the gut pathobiome in mediating the toxicological effects of environmental contaminants.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":12.6,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000292/pdfft?md5=ccd67366a751807b56159dbd629a711c&pid=1-s2.0-S2666498424000292-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140274280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonmetallic modified zero-valent iron for remediating halogenated organic compounds and heavy metals: A comprehensive review 用于修复卤代有机化合物和重金属的非金属改性零价铁:全面综述
IF 12.6 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-03-21 DOI: 10.1016/j.ese.2024.100417
Zimin Yan , Jia Ouyang , Bin Wu , Chenchen Liu , Hongcheng Wang , Aijie Wang , Zhiling Li
{"title":"Nonmetallic modified zero-valent iron for remediating halogenated organic compounds and heavy metals: A comprehensive review","authors":"Zimin Yan ,&nbsp;Jia Ouyang ,&nbsp;Bin Wu ,&nbsp;Chenchen Liu ,&nbsp;Hongcheng Wang ,&nbsp;Aijie Wang ,&nbsp;Zhiling Li","doi":"10.1016/j.ese.2024.100417","DOIUrl":"10.1016/j.ese.2024.100417","url":null,"abstract":"<div><p>Zero Valent Iron (ZVI), an ideal reductant treating persistent pollutants, is hampered by issues like corrosion, passivation, and suboptimal utilization. Recent advancements in nonmetallic modified ZVI (NM-ZVI) show promising potential in circumventing these challenges by modifying ZVI's surface and internal physicochemical properties. Despite its promise, a thorough synthesis of research advancements in this domain remains elusive. Here we review the innovative methodologies, regulatory principles, and reduction-centric mechanisms underpinning NM-ZVI's effectiveness against two prevalent persistent pollutants: halogenated organic compounds and heavy metals. We start by evaluating different nonmetallic modification techniques, such as liquid-phase reduction, mechanical ball milling, and pyrolysis, and their respective advantages. The discussion progresses towards a critical analysis of current strategies and mechanisms used for NM-ZVI to enhance its reactivity, electron selectivity, and electron utilization efficiency. This is achieved by optimizing the elemental compositions, content ratios, lattice constants, hydrophobicity, and conductivity. Furthermore, we propose novel approaches for augmenting NM-ZVI's capability to address complex pollution challenges. This review highlights NM-ZVI's potential as an alternative to remediate water environments contaminated with halogenated organic compounds or heavy metals, contributing to the broader discourse on green remediation technologies.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":12.6,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000310/pdfft?md5=b27dddca977e1053426d0a8ce1b91c0a&pid=1-s2.0-S2666498424000310-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140273382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cobalt single-atom catalyst tailored ceramic membrane for selective removal of emerging organic contaminants 用于选择性去除新兴有机污染物的钴单原子催化剂定制陶瓷膜
IF 12.6 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-03-21 DOI: 10.1016/j.ese.2024.100416
Jiaxuan Yang , Jing Zhao , Hesong Wang , Yatao Liu , Junwen Ding , Tianyi Wang , Jinlong Wang , Han Zhang , Langming Bai , Heng Liang
{"title":"Cobalt single-atom catalyst tailored ceramic membrane for selective removal of emerging organic contaminants","authors":"Jiaxuan Yang ,&nbsp;Jing Zhao ,&nbsp;Hesong Wang ,&nbsp;Yatao Liu ,&nbsp;Junwen Ding ,&nbsp;Tianyi Wang ,&nbsp;Jinlong Wang ,&nbsp;Han Zhang ,&nbsp;Langming Bai ,&nbsp;Heng Liang","doi":"10.1016/j.ese.2024.100416","DOIUrl":"10.1016/j.ese.2024.100416","url":null,"abstract":"<div><p>Water reuse is an effective way to solve the issues of current wastewater increments and water resource scarcity. Ultrafiltration, a promising method for water reuse, has the characteristics of low energy consumption, easy operation, and high adaptability to coupling with other water treatment processes. However, emerging organic contaminants (EOCs) in municipal wastewater cannot be effectively intercepted by ultrafiltration, which poses significant challenges to the effluent quality and sustainability of ultrafiltration process. Here, we develop a cobalt single-atom catalyst-tailored ceramic membrane (Co<sub>1</sub>-NCNT-CM) in conjunction with an activated peroxymonosulfate (PMS) system, achieving excellent EOCs degradation and anti-fouling performance. An interfacial reaction mechanism effectively mitigates membrane fouling through a repulsive interaction with natural organic matter. The generation of singlet oxygen at the Co-N<sub>3</sub>-C active sites through a catalytic pathway (PMS→PMS∗→OH∗→O∗→OO∗→<sup>1</sup>O<sub>2</sub>) exhibits selective oxidation of phenols and sulfonamides, achieving &gt;90% removal rates. Our findings elucidate a multi-layered functional architecture within the Co<sub>1</sub>-NCNT-CM/PMS system, responsible for its superior performance in organic decontamination and membrane maintenance during secondary effluent treatment. It highlights the power of integrating Co<sub>1</sub>-NCNT-CM/PMS systems in advanced wastewater treatment frameworks, specifically for targeted EOCs removal, heralding a new direction for sustainable water management.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":12.6,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000309/pdfft?md5=55cddcbb8ce1da56fba8af79b81dca4b&pid=1-s2.0-S2666498424000309-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140271153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing nitrogen removal in constructed wetlands: The role of influent substrate concentrations in integrated vertical-flow systems 提高人工湿地的脱氮能力:综合垂直流系统中进水基质浓度的作用
IF 12.6 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-03-20 DOI: 10.1016/j.ese.2024.100411
Tongtong Liu , Da Li , Yan Tian , Jiajie Zhou , Ye Qiu , Dongyi Li , Guohong Liu , Yujie Feng
{"title":"Enhancing nitrogen removal in constructed wetlands: The role of influent substrate concentrations in integrated vertical-flow systems","authors":"Tongtong Liu ,&nbsp;Da Li ,&nbsp;Yan Tian ,&nbsp;Jiajie Zhou ,&nbsp;Ye Qiu ,&nbsp;Dongyi Li ,&nbsp;Guohong Liu ,&nbsp;Yujie Feng","doi":"10.1016/j.ese.2024.100411","DOIUrl":"https://doi.org/10.1016/j.ese.2024.100411","url":null,"abstract":"<div><p>Recent advancements in constructed wetlands (CWs) have highlighted the imperative of enhancing nitrogen (N) removal efficiency. However, the variability in influent substrate concentrations presents a challenge in optimizing N removal strategies due to its impact on removal efficiency and mechanisms. Here we show the interplay between influent substrate concentration and N removal processes within integrated vertical-flow constructed wetlands (IVFCWs), using wastewaters enriched with NO<sub>3</sub><sup>−</sup>-N and NH<sub>4</sub><sup>+</sup>-N at varying carbon to nitrogen (C/N) ratios (1, 3, and 6). In the NO<sub>3</sub><sup>−</sup>-N enriched systems, a positive correlation was observed between the C/N ratio and total nitrogen (TN) removal efficiency, which markedly increased from 13.46 ± 2.23% to 87.00 ± 2.37% as the C/N ratio escalated from 1 to 6. Conversely, in NH<sub>4</sub><sup>+</sup>-N enriched systems, TN removal efficiencies in the A-6 setup (33.69 ± 4.83%) were marginally 1.25 to 1.29 times higher than those in A-3 and A-1 systems, attributed to constraints in dissolved oxygen (DO) levels and alkalinity. Microbial community analysis and metabolic pathway assessment revealed that anaerobic denitrification, microbial N assimilation, and dissimilatory nitrate reduction to ammonium (DNRA) predominated in NO<sub>3</sub><sup>−</sup>-N systems with higher C/N ratios (C/N ≥ 3). In contrast, aerobic denitrification and microbial N assimilation were the primary pathways in NH<sub>4</sub><sup>+</sup>-N systems and low C/N NO<sub>3</sub><sup>−</sup>-N systems. A mass balance approach indicated denitrification and microbial N assimilation contributed 4.12–47.12% and 8.51–38.96% in NO<sub>3</sub><sup>−</sup>-N systems, respectively, and 0.55–17.35% and 7.83–33.55% in NH<sub>4</sub><sup>+</sup>-N systems to TN removal. To enhance N removal, strategies for NO<sub>3</sub><sup>−</sup>-N dominated systems should address carbon source limitations and electron competition between denitrification and DNRA processes, while NH<sub>4</sub><sup>+</sup>-N dominated systems require optimization of carbon utilization pathways, and ensuring adequate DO and alkalinity supply.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":12.6,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000255/pdfft?md5=2f1e9b9a567b5a15c78ccb35312d8faa&pid=1-s2.0-S2666498424000255-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140842848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ single iron atom doping on Bi2WO6 monolayers triggers efficient photo-fenton reaction 在 Bi2WO6 单层上原位掺入单个铁原子引发高效光-芬顿反应
IF 12.6 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-03-20 DOI: 10.1016/j.ese.2024.100414
Wei Liu , Peifang Wang , Juan Chen , Xin Gao , Huinan Che , Xiaozhi Su , Bin Liu , Yanhui Ao
{"title":"In situ single iron atom doping on Bi2WO6 monolayers triggers efficient photo-fenton reaction","authors":"Wei Liu ,&nbsp;Peifang Wang ,&nbsp;Juan Chen ,&nbsp;Xin Gao ,&nbsp;Huinan Che ,&nbsp;Xiaozhi Su ,&nbsp;Bin Liu ,&nbsp;Yanhui Ao","doi":"10.1016/j.ese.2024.100414","DOIUrl":"https://doi.org/10.1016/j.ese.2024.100414","url":null,"abstract":"<div><p>Developing an efficient photocatalytic system for hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) activation in Fenton-like processes holds significant promise for advancing water purification technologies. However, challenges such as high carrier recombination rates, limited active sites, and suboptimal H<sub>2</sub>O<sub>2</sub> activation efficiency impede optimal performance. Here we show that single-iron-atom dispersed Bi<sub>2</sub>WO<sub>6</sub> monolayers (SIAD-BWOM), designed through a facile hydrothermal approach, can offer abundant active sites for H<sub>2</sub>O<sub>2</sub> activation. The SIAD-BWOM catalyst demonstrates superior photo-Fenton degradation capabilities, particularly for the persistent pesticide dinotefuran (DNF), showcasing its potential in addressing recalcitrant organic pollutants. We reveal that the incorporation of iron atoms in place of tungsten within the electron-rich [WO<sub>4</sub>]<sup>2−</sup> layers significantly facilitates electron transfer processes and boosts the Fe(II)/Fe(III) cycle efficiency. Complementary experimental investigations and theoretical analyses further elucidate how the atomically dispersed iron induces lattice strain in the Bi<sub>2</sub>WO<sub>6</sub> monolayer, thereby modulating the d-band center of iron to improve H<sub>2</sub>O<sub>2</sub> adsorption and activation. Our research provides a practical framework for developing advanced photo-Fenton catalysts, which can be used to treat emerging and refractory organic pollutants more effectively.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":12.6,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000280/pdfft?md5=a1901490d979b42f5bae0ab9ae762938&pid=1-s2.0-S2666498424000280-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140537100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tap water microbiome shifts in secondary water supply for high-rise buildings 高层建筑二次供水中自来水微生物群的变化
IF 12.6 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-03-16 DOI: 10.1016/j.ese.2024.100413
Manjie Li , Zhaowei Liu , Yongcan Chen
{"title":"Tap water microbiome shifts in secondary water supply for high-rise buildings","authors":"Manjie Li ,&nbsp;Zhaowei Liu ,&nbsp;Yongcan Chen","doi":"10.1016/j.ese.2024.100413","DOIUrl":"10.1016/j.ese.2024.100413","url":null,"abstract":"<div><p>In high-rise buildings, secondary water supply systems (SWSSs) are pivotal yet provide a conducive milieu for microbial proliferation due to intermittent flow, low disinfectant residual, and high specific pipe-surface area, raising concerns about tap water quality deterioration. Despite their ubiquity, a comprehensive understanding of bacterial community dynamics within SWSSs remains elusive. Here we show how intrinsic SWSS variables critically shape the tap water microbiome at distal ends. In an office setting, distinct from residential complexes, the diversity in piping materials instigates a noticeable bacterial community shift, exemplified by a transition from α-Proteobacteria to γ-Proteobacteria dominance, alongside an upsurge in bacterial diversity and microbial propagation potential. Extended water retention within SWSSs invariably escalates microbial regrowth propensities and modulates bacterial consortia, yet secondary disinfection emerges as a robust strategy for preserving water quality integrity. Additionally, the regularity of water usage modulates proximal flow dynamics, thereby influencing tap water's microbial landscape. Insights garnered from this investigation lay the groundwork for devising effective interventions aimed at safeguarding microbiological standards at the consumer's endpoint.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":12.6,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000279/pdfft?md5=b893cbced8703daade210db2f6b7aa00&pid=1-s2.0-S2666498424000279-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140273221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical stress and acid orange 7 synergistically clear the blockage of electron flow in the methanogenesis of low-strength wastewater 电应力和酸性橙 7 协同清除低浓度废水产甲烷过程中电子流的阻塞
IF 12.6 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-03-13 DOI: 10.1016/j.ese.2024.100410
Ze-Chong Guo , Min-Hua Cui , Chun-Xue Yang , Hong-Liang Dai , Tong-Yi Yang , Lin-Zhi Zhai , Yong Chen , Wen-Zong Liu , Ai-Jie Wang
{"title":"Electrical stress and acid orange 7 synergistically clear the blockage of electron flow in the methanogenesis of low-strength wastewater","authors":"Ze-Chong Guo ,&nbsp;Min-Hua Cui ,&nbsp;Chun-Xue Yang ,&nbsp;Hong-Liang Dai ,&nbsp;Tong-Yi Yang ,&nbsp;Lin-Zhi Zhai ,&nbsp;Yong Chen ,&nbsp;Wen-Zong Liu ,&nbsp;Ai-Jie Wang","doi":"10.1016/j.ese.2024.100410","DOIUrl":"10.1016/j.ese.2024.100410","url":null,"abstract":"<div><p>Energy recovery from low-strength wastewater through anaerobic methanogenesis is constrained by limited substrate availability. The development of efficient methanogenic communities is critical but challenging. Here we develop a strategy to acclimate methanogenic communities using conductive carrier (CC), electrical stress (ES), and Acid Orange 7 (AO7) in a modified biofilter. The synergistic integration of CC, ES, and AO7 precipitated a remarkable 72-fold surge in methane production rate compared to the baseline. This increase was attributed to an altered methanogenic community function, independent of the continuous presence of AO7 and ES. AO7 acted as an external electron acceptor, accelerating acetogenesis from fermentation intermediates, restructuring the bacterial community, and enriching electroactive bacteria (EAB). Meanwhile, CC and ES orchestrated the assembly of the archaeal community and promoted electrotrophic methanogens, enhancing acetotrophic methanogenesis electron flow via a mechanism distinct from direct electrochemical interactions. The collective application of CC, ES, and AO7 effectively mitigated electron flow impediments in low-strength wastewater methanogenesis, achieving an additional 34% electron recovery from the substrate. This study proposes a new method of amending anaerobic digestion systems with conductive materials to advance wastewater treatment, sustainability, and energy self-sufficiency.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":12.6,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000243/pdfft?md5=7c4daaf43645adf9cea2be1ba0027138&pid=1-s2.0-S2666498424000243-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140279873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal drivers of urban water pollution: Assessment of 102 cities across the Yangtze River Basin 城市水污染的时空驱动因素:对长江流域 102 个城市的评估
IF 12.6 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-03-11 DOI: 10.1016/j.ese.2024.100412
Yi-Lin Zhao , Han-Jun Sun , Xiao-Dan Wang , Jie Ding , Mei-Yun Lu , Ji-Wei Pang , Da-Peng Zhou , Ming Liang , Nan-Qi Ren , Shan-Shan Yang
{"title":"Spatiotemporal drivers of urban water pollution: Assessment of 102 cities across the Yangtze River Basin","authors":"Yi-Lin Zhao ,&nbsp;Han-Jun Sun ,&nbsp;Xiao-Dan Wang ,&nbsp;Jie Ding ,&nbsp;Mei-Yun Lu ,&nbsp;Ji-Wei Pang ,&nbsp;Da-Peng Zhou ,&nbsp;Ming Liang ,&nbsp;Nan-Qi Ren ,&nbsp;Shan-Shan Yang","doi":"10.1016/j.ese.2024.100412","DOIUrl":"https://doi.org/10.1016/j.ese.2024.100412","url":null,"abstract":"<div><p>Effective management of large basins necessitates pinpointing the spatial and temporal drivers of primary index exceedances and urban risk factors, offering crucial insights for basin administrators. Yet, comprehensive examinations of multiple pollutants within the Yangtze River Basin remain scarce. Here we introduce a pollution inventory for urban clusters surrounding the Yangtze River Basin, analyzing water quality data from 102 cities during 2018–2019. We assessed the exceedance rates for six pivotal indicators: dissolved oxygen (DO), ammonia nitrogen (NH<sub>3</sub>–N), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total phosphorus (TP), and the permanganate index (COD<sub>Mn</sub>) for each city. Employing random forest regression and SHapley Additive exPlanations (SHAP) analyses, we identified the spatiotemporal factors influencing these key indicators. Our results highlight agricultural activities as the primary contributors to the exceedance of all six indicators, thus pinpointing them as the leading pollution source in the basin. Additionally, forest coverage, livestock farming, chemical and pharmaceutical sectors, along with meteorological elements like precipitation and temperature, significantly impacted various indicators' exceedances. Furthermore, we delineate five core urban risk components through principal component analysis, which are (1) anthropogenic and industrial activities, (2) agricultural practices and forest extent, (3) climatic variables, (4) livestock rearing, and (5) principal polluting sectors. The cities were subsequently evaluated and categorized based on these risk components, incorporating policy interventions and administrative performance within each region. The comprehensive analysis advocates for a customized strategy in addressing the discerned risk factors, especially for cities presenting elevated risk levels.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":12.6,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000267/pdfft?md5=925f784a52b136b0b980715b93bbbac5&pid=1-s2.0-S2666498424000267-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140190932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microeukaryotic plankton community dynamics under ecological water replenishment: Insights from eDNA metabarcoding 生态补水下的微真核浮游生物群落动力学:eDNA 代谢编码的启示
IF 12.6 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-03-07 DOI: 10.1016/j.ese.2024.100409
Shuping Wang , Songsong Gu , Yaqun Zhang , Ye Deng , Wenhui Qiu , Qianhang Sun , Tianxu Zhang , Pengyuan Wang , Zhenguang Yan
{"title":"Microeukaryotic plankton community dynamics under ecological water replenishment: Insights from eDNA metabarcoding","authors":"Shuping Wang ,&nbsp;Songsong Gu ,&nbsp;Yaqun Zhang ,&nbsp;Ye Deng ,&nbsp;Wenhui Qiu ,&nbsp;Qianhang Sun ,&nbsp;Tianxu Zhang ,&nbsp;Pengyuan Wang ,&nbsp;Zhenguang Yan","doi":"10.1016/j.ese.2024.100409","DOIUrl":"10.1016/j.ese.2024.100409","url":null,"abstract":"<div><p>Ecological water replenishment (EWR) is an important strategy for river restoration globally, but timely evaluation of its ecological effects at a large spatiotemporal scale to further adjust the EWR schemes is of great challenge. Here, we examine the impact of EWR on microeukaryotic plankton communities in three distinct river ecosystems through environmental DNA (eDNA) metabarcoding. The three ecosystems include a long-term cut-off river, a short-term connected river after EWR, and long-term connected rivers. We analyzed community stability by investigating species composition, stochastic and deterministic dynamics interplay, and ecological network robustness. We found that EWR markedly reduced the diversity and complexity of microeukaryotic plankton, altered their community dynamics, and lessened the variation within the community. Moreover, EWR disrupted the deterministic patterns of community organization, favoring dispersal constraints, and aligning with trends observed in naturally connected rivers. The shift from an isolated to a temporarily connected river appeared to transition community structuring mechanisms from deterministic to stochastic dominance, whereas, in permanently connected rivers, both forces concurrently influenced community assembly. The ecological network in temporarily connected rivers post-EWR demonstrated significantly greater stability and intricacy compared to other river systems. This shift markedly bolstered the resilience of the ecological network. The eDNA metabarcoding insights offer a novel understanding of ecosystem resilience under EWR interventions, which could be critical in assessing the effects of river restoration projects throughout their life cycle.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":12.6,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000231/pdfft?md5=fff7809fa0be3125e3d7d66f9e17139d&pid=1-s2.0-S2666498424000231-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140087864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信