Yi-ping Chen , Kai-bo Wang , Bo-jie Fu , Yan-fen Wang , Han-wen Tian , Yi Wang , Yi Zhang
{"title":"65% cover is the sustainable vegetation threshold on the Loess Plateau","authors":"Yi-ping Chen , Kai-bo Wang , Bo-jie Fu , Yan-fen Wang , Han-wen Tian , Yi Wang , Yi Zhang","doi":"10.1016/j.ese.2024.100442","DOIUrl":"https://doi.org/10.1016/j.ese.2024.100442","url":null,"abstract":"<div><p>Global temperatures will continue to increase in the future. The ∼640,000-km<sup>2</sup> Loess Plateau (LP) is a typical arid and semi-arid region in China. Similar regions cover ∼41% of the Earth, and its soils are some of the most severely eroded anywhere in the world. It is very important to understand the vegetation change and its ecological threshold under climate change on the LP for the sustainable development in the Yellow River Basin. However, little is known about how vegetation on the LP will respond to climate change and what is the sustainable threshold level of vegetation cover on the LP. Here we show that the temperature on the LP has risen 0.27 °C per decade over the past 50 years, a rate that is 30% higher than the average warming rate across China. During historical times, vegetation change was regulated by environmental factors and anthropogenic activities. Vegetation coverage was about 53% on the LP from the Xia Dynasty to the Spring and Autumn and Warring States period. Over the past 70 years, however, the environment has gradually improved and the vegetation cover had increased to ∼65% by 2021. We forecast future changes of vegetation cover on the LP in 2030s, in 2050s and in 2070s using SDM (Species Distribution Model) under Low-emission scenarios, Medium-emission scenarios and High-emission scenarios. An average value of vegetation cover under the three emission scenarios will be 64.67%, 62.70% and 61.47%, respectively. According to the historical record and SDM forecasts, the threshold level of vegetation cover on the LP is estimated to be 53–65%. Currently, vegetation cover on the LP has increased to the upper limit of the threshold value (∼65%). We conclude that the risk of ecosystem collapse on the LP will increase with further temperature increases once the vegetated area and density exceed the threshold value. It is urgent to adopt sustainable strategies such as stopping expanding vegetation area and scientifically optimizing the vegetation structure on the LP to improve the ecological sustainability of the Yellow River Basin.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100442"},"PeriodicalIF":14.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000565/pdfft?md5=1c264a25cf8cb314b35525a445a21dab&pid=1-s2.0-S2666498424000565-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141483422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlo Moscariello, Silvio Matassa, Francesco Pirozzi, Giovanni Esposito, Stefano Papirio
{"title":"Valorisation of industrial hemp (Cannabis sativa L.) residues and cheese whey into volatile fatty acids for single cell protein production","authors":"Carlo Moscariello, Silvio Matassa, Francesco Pirozzi, Giovanni Esposito, Stefano Papirio","doi":"10.1016/j.ese.2024.100439","DOIUrl":"10.1016/j.ese.2024.100439","url":null,"abstract":"<div><p>The production of single cell protein (SCP) using lignocellulosic materials stands out as a promising route in the circular bioeconomy transition. However, multiple steps are necessary for lignocellulosics-to-SCP processes, involving chemical pretreatments and specific aerobic cultures. Whereas there are no studies that investigated the SCP production from lignocellulosics by using only biological processes and microbial biomass able to work both anaerobically and aerobically. In this view, the valorisation of industrial hemp (<em>Cannabis sativa</em> L.) biomass residues (HBRs), specifically hurds and a mix of leaves and inflorescences, combined with cheese whey (CW) was investigated through a semi-continuous acidogenic co-fermentation process (co-AF). The aim of this study was to maximise HBRs conversion into VFAs to be further used as carbon-rich substrates for SCP production. Different process conditions were tested by either removing CW or increasing the amount of HBRs in terms of VS (i.e., two and four times) to evaluate the performance of the co-AF process. Increasing HBRs resulted in a proportional increase in VFA production up to 3115 mg HAc L<sup>−1</sup>, with experimental production nearly 40% higher than theoretical predictions. The synergy between HBRs and CW was demonstrated, proving the latter as essential to improve the biodegradability of the former. The produced VFAs were subsequently tested as substrates for SCP synthesis in batch aerobic tests. A biomass concentration of 2.43 g TSS L<sup>−1</sup> was achieved with a C/N ratio of 5.0 and a pH of 9.0 after two days of aerobic fermentation, reaching a protein content of 42% (g protein per g TSS). These results demonstrate the overall feasibility of the VFA-mediated HBR-to-SCP valorisation process.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100439"},"PeriodicalIF":14.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266649842400053X/pdfft?md5=889e81d50253791b102694b88e119cc2&pid=1-s2.0-S266649842400053X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141413557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cheng-Cheng Dang , Yin-Zhu Jin , Xin Tan , Wen-Bo Nie , Yang Lu , Bing-Feng Liu , De-Feng Xing , Nan-Qi Ren , Guo-Jun Xie
{"title":"Nitrite-driven anaerobic ethane oxidation","authors":"Cheng-Cheng Dang , Yin-Zhu Jin , Xin Tan , Wen-Bo Nie , Yang Lu , Bing-Feng Liu , De-Feng Xing , Nan-Qi Ren , Guo-Jun Xie","doi":"10.1016/j.ese.2024.100438","DOIUrl":"10.1016/j.ese.2024.100438","url":null,"abstract":"<div><p>Ethane, the second most abundant gaseous hydrocarbon in vast anoxic environments, is an overlooked greenhouse gas. Microbial anaerobic oxidation of ethane can be driven by available electron acceptors such as sulfate and nitrate. However, despite nitrite being a more thermodynamically feasible electron acceptor than sulfate or nitrate, little is known about nitrite-driven anaerobic ethane oxidation. In this study, a microbial culture capable of nitrite-driven anaerobic ethane oxidation was enriched through the long-term operation of a nitrite-and-ethane-fed bioreactor. During continuous operation, the nitrite removal rate and the theoretical ethane oxidation rate remained stable at approximately 25.0 mg NO<sub>2</sub><sup>–</sup>N L<sup>−1</sup> d<sup>−1</sup> and 11.48 mg C<sub>2</sub>H<sub>6</sub> L<sup>−1</sup> d<sup>−1</sup>, respectively. Batch tests demonstrated that ethane is essential for nitrite removal in this microbial culture. Metabolic function analysis revealed that a species affiliated with a novel genus within the family Rhodocyclaceae, designated as '<em>Candidatus</em> Alkanivoras nitrosoreducens', may perform the nitrite-driven anaerobic ethane oxidation. In the proposed metabolic model, despite the absence of known genes for ethane conversion to ethyl-succinate and succinate-CoA ligase, '<em>Ca</em>. A. nitrosoreducens' encodes a prospective fumarate addition pathway for anaerobic ethane oxidation and a complete denitrification pathway for nitrite reduction to nitrogen. These findings advance our understanding of nitrite-driven anaerobic ethane oxidation, highlighting the previously overlooked impact of anaerobic ethane oxidation in natural ecosystems.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100438"},"PeriodicalIF":14.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000528/pdfft?md5=dfae899e89f6f60f9a583213ab0f39ec&pid=1-s2.0-S2666498424000528-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141396370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Liu , Mei-Po Kwan , Jianying Wang , Jiannan Cai
{"title":"Confounding associations between green space and outdoor artificial light at night: Systematic investigations and implications for urban health","authors":"Yang Liu , Mei-Po Kwan , Jianying Wang , Jiannan Cai","doi":"10.1016/j.ese.2024.100436","DOIUrl":"10.1016/j.ese.2024.100436","url":null,"abstract":"<div><p>Excessive urbanization leads to considerable nature deficiency and abundant artificial infrastructure in urban areas, which triggered intensive discussions on people's exposure to green space and outdoor artificial light at night (ALAN). Recent academic progress highlights that people's exposure to green space and outdoor ALAN may be confounders of each other but lacks systematic investigations. This study investigates the associations between people's exposure to green space and outdoor ALAN by adopting the three most used research paradigms: population-level residence-based, individual-level residence-based, and individual-level mobility-oriented paradigms. We employed the green space and outdoor ALAN data of 291 Tertiary Planning Units in Hong Kong for population-level analysis. We also used data from 940 participants in six representative communities for individual-level analyses. Hong Kong green space and outdoor ALAN were derived from high-resolution remote sensing data. The total exposures were derived using the spatiotemporally weighted approaches. Our results confirm that the negative associations between people's exposure to green space and outdoor ALAN are universal across different research paradigms, spatially non-stationary, and consistent among different socio-demographic groups. We also observed that mobility-oriented measures may lead to stronger negative associations than residence-based measures by mitigating the contextual errors of residence-based measures. Our results highlight the potential confounding associations between people's exposure to green space and outdoor ALAN, and we strongly recommend relevant studies to consider both of them in modeling people's health outcomes, especially for those health outcomes impacted by the co-exposure to them.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100436"},"PeriodicalIF":14.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000504/pdfft?md5=678dc38e07c3792a4fce3dc4e699c58f&pid=1-s2.0-S2666498424000504-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141392824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xingxing Zhang , Pengbo Jiao , Yiwei Wang , Yinying Dai , Ming Zhang , Peng Wu , Liping Ma
{"title":"Optimizing anaerobic digestion: Benefits of mild temperature transition from thermophilic to mesophilic conditions","authors":"Xingxing Zhang , Pengbo Jiao , Yiwei Wang , Yinying Dai , Ming Zhang , Peng Wu , Liping Ma","doi":"10.1016/j.ese.2024.100440","DOIUrl":"10.1016/j.ese.2024.100440","url":null,"abstract":"<div><p>Anaerobic digestion (AD) plays a significant role in renewable energy recovery. Upgrading AD from thermophilic (50–57 °C) to mesophilic (30–38 °C) conditions to enhance process stability and reduce energy input remains challenging due to the high sensitivity of thermophilic microbiomes to temperature fluctuations. Here we compare the effects of two decreasing-temperature modes from 55 to 35 °C on cell viability, microbial dynamics, and interspecies interactions. A sharp transition (ST) is a one-step transition by 20 °C d<sup>−1</sup>, while a mild transition (MT) is a stepwise transition by 1 °C d<sup>−1</sup>. We find a greater decrease in methane production with ST (88.8%) compared to MT (38.9%) during the transition period. ST mode overproduced reactive oxygen species by 1.6-fold, increased membrane permeability by 2.2-fold, and downregulated microbial energy metabolism by 25.1%, leading to increased apoptosis of anaerobes by 1.9-fold and release of intracellular substances by 2.9-fold, further constraining methanogenesis. The higher (1.6 vs. 1.1 copies per <em>gyr</em>A) metabolic activity of acetate-dependent methanogenesis implied more efficient methane production in a steady mesophilic, MT-mediated system. Metagenomic binning and network analyses indicated that ST induced dysbiosis in keystone species and greatly enhanced microbial functional redundancy, causing loss of microbial syntrophic interactions and redundant metabolic pathways. In contrast, the greater microbial interconnections (average degrees 44.9 vs. 22.1) in MT at a steady mesophilic state suggested that MT could better maintain necessary system functionality and stability through microbial syntrophy or specialized pathways. Adopting MT to transform thermophilic digesters into mesophilic digesters is feasible and could potentially enhance the further optimization and broader application of practical anaerobic engineering.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100440"},"PeriodicalIF":12.6,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000541/pdfft?md5=1e3a5fe99d8cb02cc135ef6228bedee4&pid=1-s2.0-S2666498424000541-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141391364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Zhang , Yu Qiu , Kai Liu , Wenjun Zhong , Jianghua Yang , Florian Altermatt , Xiaowei Zhang
{"title":"Evaluating eDNA and eRNA metabarcoding for aquatic biodiversity assessment: From bacteria to vertebrates","authors":"Yan Zhang , Yu Qiu , Kai Liu , Wenjun Zhong , Jianghua Yang , Florian Altermatt , Xiaowei Zhang","doi":"10.1016/j.ese.2024.100441","DOIUrl":"10.1016/j.ese.2024.100441","url":null,"abstract":"<div><p>The monitoring and management of aquatic ecosystems depend on precise estimates of biodiversity. Metabarcoding analyses of environmental nucleic acids (eNAs), including environmental DNA (eDNA) and environmental RNA (eRNA), have garnered attention for their cost-effective and non-invasive biomonitoring capabilities. However, the accuracy of biodiversity estimates obtained through eNAs can vary among different organismal groups. Here we evaluate the performance of eDNA and eRNA metabarcoding across nine organismal groups, ranging from bacteria to terrestrial vertebrates, in three cross-sections of the Yangtze River, China. We observe robust complementarity between eDNA and eRNA data. The relative detectability of eNAs was notably influenced by major taxonomic groups and organismal sizes, with eDNA providing more robust signals for larger organisms. Both eDNA and eRNA exhibited similar cross-sectional and longitudinal patterns. However, the detectability of larger organisms declined in eRNA metabarcoding, possibly due to differential RNA release and decay among different organismal groups or sizes. While underscoring the potential of eDNA and eRNA in large river biomonitoring, we emphasize the need for differential interpretation of eDNA versus eRNA data. This highlights the importance of careful method selection and interpretation in biomonitoring studies.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100441"},"PeriodicalIF":14.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000553/pdfft?md5=602bc0204e43a15a656d11559d2ea870&pid=1-s2.0-S2666498424000553-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141389831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antagonistic interaction between caffeine and ketamine in zebrafish: Implications for aquatic toxicity","authors":"Zhenglu Wang , Jindong Xu , Wei Du","doi":"10.1016/j.ese.2024.100437","DOIUrl":"10.1016/j.ese.2024.100437","url":null,"abstract":"<div><p>The coexistence of caffeine (CF) and ketamine (KET) in surface waters across Asia has been widely reported. Previous studies have implied that CF and KET may share a mechanism of action. However, the combined toxicity of these two chemicals on aquatic organisms remains unclear at environmental levels, and the underlying mechanisms are not well understood. Here we demonstrate that KET antagonizes the adverse effects of CF on zebrafish larvae by modulating the gamma-aminobutyric acid (GABA)ergic synapse pathway. Specifically, KET (10–250 ng L<sup>−1</sup>) ameliorates the locomotor hyperactivity and impaired circadian rhythms in zebrafish larvae induced by 2 mg L<sup>−1</sup> of CF, showing a dose-dependent relationship. Additionally, the developmental abnormalities in zebrafish larvae exposed to CF are mitigated by KET, with an incidence rate reduced from 26.7% to 6.7%. The competition between CF and KET for binding sites on the GABA-A receptor (<em>in situ</em> and <em>in silico</em>) elucidates the antagonistic interactions between the two chemicals. Following a seven-day recovery period, the adverse outcomes of CF exposure persist in the fish, whereas the changes observed in the CF + KET groups are significantly alleviated, especially with KET at 10 ng L<sup>−1</sup>. Based on these results, it is imperative to further assess the environmental risks associated with CF and KET co-pollution. This pilot study underscores the utility of systems toxicology approaches in estimating the combined toxicity of environmental chemicals on aquatic organisms. Moreover, the nighttime behavioral functions of fish could serve as a sensitive biomarker for evaluating the toxicity of psychoactive substances.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100437"},"PeriodicalIF":12.6,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000516/pdfft?md5=b727c9d9e14b1922c4d10b39c40c3940&pid=1-s2.0-S2666498424000516-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141414912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drawing a synergetic roadmap of carbon neutrality and clean air for China — Introduction to the new column synergetic roadmap","authors":"Jinnan Wang, Yixuan Zheng","doi":"10.1016/j.ese.2024.100435","DOIUrl":"https://doi.org/10.1016/j.ese.2024.100435","url":null,"abstract":"","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"20 ","pages":"Article 100435"},"PeriodicalIF":12.6,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000498/pdfft?md5=e8259225fe666c057dec41a210967eb7&pid=1-s2.0-S2666498424000498-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141303235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huiyu Xie , Yu Ma , Xiaowei Jin , Shiqi Jia , Xu Zhao , Xianfu Zhao , Yongjiu Cai , Jian Xu , Fengchang Wu , John P. Giesy
{"title":"Land use and river-lake connectivity: Biodiversity determinants of lake ecosystems","authors":"Huiyu Xie , Yu Ma , Xiaowei Jin , Shiqi Jia , Xu Zhao , Xianfu Zhao , Yongjiu Cai , Jian Xu , Fengchang Wu , John P. Giesy","doi":"10.1016/j.ese.2024.100434","DOIUrl":"https://doi.org/10.1016/j.ese.2024.100434","url":null,"abstract":"<div><p>Lake ecosystems confront escalating challenges to their stability and resilience, most intuitively leading to biodiversity loss, necessitating effective preservation strategies to safeguard aquatic environments. However, the complexity of ecological processes governing lake biodiversity under multi-stressor interactions remains an ongoing concern, primarily due to insufficient long-term bioindicator data, particularly concerning macroinvertebrate biodiversity. Here we utilize a unique, continuous, and <em>in situ</em> biomonitoring dataset spanning from 2011 to 2019 to investigate the spatio-temporal variation of macroinvertebrate communities. We assess the impact of four crucial environmental parameters on Lake Dongting and Lake Taihu, i.e., water quality, hydrology, climate change, and land use. These two systems are representative of lakes with Yangtze-connected and disconnected subtropical floodplains in China. We find an alarming trend of declining taxonomic and functional diversities among macroinvertebrate communities despite improvements in water quality. Primary contributing factors to this decline include persistent anthropogenic pressures, particularly alterations in human land use around the lakes, including intensified nutrient loads and reduced habitat heterogeneity. Notably, river-lake connectivity is pivotal in shaping differential responses to multiple stressors. Our results highlight a strong correlation between biodiversity alterations and land use within a 2–5 km radius and 0.05–2.5 km from the shorelines of Lakes Dongting and Taihu, respectively. These findings highlight the importance of implementing land buffer zones with specific spatial scales to enhance taxonomic and functional diversity, securing essential ecosystem services and enhancing the resilience of crucial lake ecosystems.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100434"},"PeriodicalIF":12.6,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000486/pdfft?md5=67354902a51074e3daa0eb58e9dfcb40&pid=1-s2.0-S2666498424000486-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141323566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Jiang , Bojie Fu , Zhongguo Shu , Yihe Lv , Guangyao Gao , Xiaoming Feng , Stefan Schüler , Xing Wu , Cong Wang
{"title":"Spatiotemporal drivers of Nature's contributions to people: A county-level study","authors":"Wei Jiang , Bojie Fu , Zhongguo Shu , Yihe Lv , Guangyao Gao , Xiaoming Feng , Stefan Schüler , Xing Wu , Cong Wang","doi":"10.1016/j.ese.2024.100430","DOIUrl":"https://doi.org/10.1016/j.ese.2024.100430","url":null,"abstract":"<div><p>Nature's contributions to people (NCP) encompass both the beneficial and detrimental effects of living nature on human quality of life, including regulatory, material, and non-material contributions. Globally, vital NCPs have been deteriorating, accelerated by changes in both natural and anthropogenic drivers over recent decades. Despite the often inevitable trade-offs between NCPs due to their spatially and temporally uneven distributions, few studies have quantitatively assessed the impacts of different drivers on the spatial and temporal changes in multiple NCPs and their interrelationships. Here we evaluate the effects of precipitation, temperature, population, gross domestic product, vegetation restoration, and urban expansion on four key regulatory NCPs—habitat maintenance, climate regulation, water quantity regulation, and soil protection—in Nei Mongol at the county level. We observe increasing trends in climate regulation and soil protection from 2000 to 2019, contrasted with declining trends in habitat maintenance and water quantity regulation. We have identified the dominant positive and negative drivers influencing each NCP across individual counties, finding that natural drivers predominantly overpowered anthropogenic drivers. Furthermore, we discover significant spatial disparities in the trade-off or synergy relationships between NCPs across the counties. Our findings illustrate how the impacts of various drivers on NCPs and their interrelationships can be quantitatively evaluated, offering significant potential for application in various spatial scales. With an understanding of trade-offs and scale effects, these insights are expected to support and inform policymaking at both county and provincial levels.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"20 ","pages":"Article 100430"},"PeriodicalIF":12.6,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000449/pdfft?md5=cb43b7157273bff8b8a7ad21faca5317&pid=1-s2.0-S2666498424000449-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141090809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}