通过扩散导电带进行地下水电生物修复:综述。

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Environmental Science and Ecotechnology Pub Date : 2024-11-24 eCollection Date: 2025-01-01 DOI:10.1016/j.ese.2024.100516
Federico Aulenta, Matteo Tucci, Carolina Cruz Viggi, Stefano Milia, Seyedmehdi Hosseini, Gianluigi Farru, Rajandrea Sethi, Carlo Bianco, Tiziana Tosco, Marios Ioannidis, Giulio Zanaroli, Riccardo Ruffo, Carlo Santoro, Ugo Marzocchi, Giorgio Cassiani, Luca Peruzzo
{"title":"通过扩散导电带进行地下水电生物修复:综述。","authors":"Federico Aulenta, Matteo Tucci, Carolina Cruz Viggi, Stefano Milia, Seyedmehdi Hosseini, Gianluigi Farru, Rajandrea Sethi, Carlo Bianco, Tiziana Tosco, Marios Ioannidis, Giulio Zanaroli, Riccardo Ruffo, Carlo Santoro, Ugo Marzocchi, Giorgio Cassiani, Luca Peruzzo","doi":"10.1016/j.ese.2024.100516","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial electrochemical technologies (MET) can remove a variety of organic and inorganic pollutants from contaminated groundwater. However, despite significant laboratory-scale successes over the past decade, field-scale applications remain limited. We hypothesize that enhancing the electrochemical conductivity of the soil surrounding electrodes could be a groundbreaking and cost-effective alternative to deploying numerous high-surface-area electrodes in short distances. This could be achieved by injecting environmentally safe iron- or carbon-based conductive (nano)particles into the aquifer. Upon transport and deposition onto soil grains, these particles create an electrically conductive zone that can be exploited to control and fine-tune the delivery of electron donors or acceptors over large distances, thereby driving the process more efficiently. Beyond extending the radius of influence of electrodes, these diffuse electro-conductive zones (DECZ) could also promote the development of syntrophic anaerobic communities that degrade contaminants via direct interspecies electron transfer (DIET). In this review, we present the state-of-the-art in applying conductive materials for MET and DIET-based applications. We also provide a comprehensive overview of the physicochemical properties of candidate electrochemically conductive materials and related injection strategies suitable for field-scale implementation. Finally, we illustrate and critically discuss current and prospective electrochemical and geophysical methods for measuring soil electronic conductivity-both in the laboratory and in the field-before and after injection practices, which are crucial for determining the extent of DECZ. This review article provides critical information for a robust design and <i>in situ</i> implementation of groundwater electro-bioremediation processes.</p>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"23 ","pages":"100516"},"PeriodicalIF":14.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655697/pdf/","citationCount":"0","resultStr":"{\"title\":\"Groundwater electro-bioremediation via diffuse electro-conductive zones: A critical review.\",\"authors\":\"Federico Aulenta, Matteo Tucci, Carolina Cruz Viggi, Stefano Milia, Seyedmehdi Hosseini, Gianluigi Farru, Rajandrea Sethi, Carlo Bianco, Tiziana Tosco, Marios Ioannidis, Giulio Zanaroli, Riccardo Ruffo, Carlo Santoro, Ugo Marzocchi, Giorgio Cassiani, Luca Peruzzo\",\"doi\":\"10.1016/j.ese.2024.100516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial electrochemical technologies (MET) can remove a variety of organic and inorganic pollutants from contaminated groundwater. However, despite significant laboratory-scale successes over the past decade, field-scale applications remain limited. We hypothesize that enhancing the electrochemical conductivity of the soil surrounding electrodes could be a groundbreaking and cost-effective alternative to deploying numerous high-surface-area electrodes in short distances. This could be achieved by injecting environmentally safe iron- or carbon-based conductive (nano)particles into the aquifer. Upon transport and deposition onto soil grains, these particles create an electrically conductive zone that can be exploited to control and fine-tune the delivery of electron donors or acceptors over large distances, thereby driving the process more efficiently. Beyond extending the radius of influence of electrodes, these diffuse electro-conductive zones (DECZ) could also promote the development of syntrophic anaerobic communities that degrade contaminants via direct interspecies electron transfer (DIET). In this review, we present the state-of-the-art in applying conductive materials for MET and DIET-based applications. We also provide a comprehensive overview of the physicochemical properties of candidate electrochemically conductive materials and related injection strategies suitable for field-scale implementation. Finally, we illustrate and critically discuss current and prospective electrochemical and geophysical methods for measuring soil electronic conductivity-both in the laboratory and in the field-before and after injection practices, which are crucial for determining the extent of DECZ. This review article provides critical information for a robust design and <i>in situ</i> implementation of groundwater electro-bioremediation processes.</p>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"23 \",\"pages\":\"100516\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655697/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ese.2024.100516\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ese.2024.100516","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微生物电化学技术(MET)可以去除受污染地下水中的多种有机和无机污染物。然而,尽管在过去十年中取得了重大的实验室规模的成功,但现场规模的应用仍然有限。我们假设,提高电极周围土壤的电化学导电性可能是在短距离内部署大量高表面积电极的开创性和经济有效的替代方案。这可以通过向含水层注入环保的铁基或碳基导电(纳米)颗粒来实现。在运输和沉积到土壤颗粒上时,这些颗粒会产生一个导电区,可以用来控制和微调远距离电子供体或受体的传递,从而更有效地推动这一过程。除了扩大电极的影响半径外,这些扩散导电区(DECZ)还可以促进通过直接种间电子转移(DIET)降解污染物的厌氧共生群落的发展。在这篇综述中,我们介绍了导电材料在MET和膳食基应用方面的最新进展。我们还全面概述了候选电化学导电材料的物理化学性质以及适用于现场规模实施的相关注入策略。最后,我们说明并批判性地讨论了目前和未来用于测量土壤电导率的电化学和地球物理方法——无论是在实验室还是在现场——在注入实践之前和之后,这对于确定DECZ的程度至关重要。这篇综述文章为地下水电生物修复工艺的稳健设计和原位实施提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Groundwater electro-bioremediation via diffuse electro-conductive zones: A critical review.

Microbial electrochemical technologies (MET) can remove a variety of organic and inorganic pollutants from contaminated groundwater. However, despite significant laboratory-scale successes over the past decade, field-scale applications remain limited. We hypothesize that enhancing the electrochemical conductivity of the soil surrounding electrodes could be a groundbreaking and cost-effective alternative to deploying numerous high-surface-area electrodes in short distances. This could be achieved by injecting environmentally safe iron- or carbon-based conductive (nano)particles into the aquifer. Upon transport and deposition onto soil grains, these particles create an electrically conductive zone that can be exploited to control and fine-tune the delivery of electron donors or acceptors over large distances, thereby driving the process more efficiently. Beyond extending the radius of influence of electrodes, these diffuse electro-conductive zones (DECZ) could also promote the development of syntrophic anaerobic communities that degrade contaminants via direct interspecies electron transfer (DIET). In this review, we present the state-of-the-art in applying conductive materials for MET and DIET-based applications. We also provide a comprehensive overview of the physicochemical properties of candidate electrochemically conductive materials and related injection strategies suitable for field-scale implementation. Finally, we illustrate and critically discuss current and prospective electrochemical and geophysical methods for measuring soil electronic conductivity-both in the laboratory and in the field-before and after injection practices, which are crucial for determining the extent of DECZ. This review article provides critical information for a robust design and in situ implementation of groundwater electro-bioremediation processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信