Causal-inference machine learning reveals the drivers of China's 2022 ozone rebound

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Lin Wang , Baihua Chen , Jingyi Ouyang , Yanshu Mu , Ling Zhen , Lin Yang , Wei Xu , Lina Tang
{"title":"Causal-inference machine learning reveals the drivers of China's 2022 ozone rebound","authors":"Lin Wang ,&nbsp;Baihua Chen ,&nbsp;Jingyi Ouyang ,&nbsp;Yanshu Mu ,&nbsp;Ling Zhen ,&nbsp;Lin Yang ,&nbsp;Wei Xu ,&nbsp;Lina Tang","doi":"10.1016/j.ese.2025.100524","DOIUrl":null,"url":null,"abstract":"<div><div>Ground-level ozone concentrations rebounded significantly across China in 2022, challenging air quality management and public health. Identifying the drivers of this rebound is crucial for designing effective mitigation strategies. Commonly used methods, such as chemical transport models and machine learning, provide valuable insights but face limitations—chemical transport models are computationally intensive, while machine learning often fails to address confounding factors or establish causality. Here we show that elevated temperatures and increased solar radiation, as primary meteorological drivers, collectively account for 57 % of the total ozone increase, based on an integrated analysis of ground-based monitoring data, satellite observations, and meteorological reanalysis information using explainable machine learning and causal inference techniques. Compared to the year 2021, 90 % of the stations reported an increase in the Formaldehyde to Nitrogen ratio, implying a growing sensitivity of ozone formation to nitrogen oxide levels. These findings highlight the significant causal role of meteorological changes in the ozone rebound, urging the adoption of targeted ozone mitigation strategies under climate warming, particularly through varied regional strategies that consider existing anthropogenic emission levels and the prospective increase in biogenic volatile organic compounds. This identification of causal relationships in air pollution dynamics can support data-driven and accurate decision-making.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100524"},"PeriodicalIF":14.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786889/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266649842500002X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ground-level ozone concentrations rebounded significantly across China in 2022, challenging air quality management and public health. Identifying the drivers of this rebound is crucial for designing effective mitigation strategies. Commonly used methods, such as chemical transport models and machine learning, provide valuable insights but face limitations—chemical transport models are computationally intensive, while machine learning often fails to address confounding factors or establish causality. Here we show that elevated temperatures and increased solar radiation, as primary meteorological drivers, collectively account for 57 % of the total ozone increase, based on an integrated analysis of ground-based monitoring data, satellite observations, and meteorological reanalysis information using explainable machine learning and causal inference techniques. Compared to the year 2021, 90 % of the stations reported an increase in the Formaldehyde to Nitrogen ratio, implying a growing sensitivity of ozone formation to nitrogen oxide levels. These findings highlight the significant causal role of meteorological changes in the ozone rebound, urging the adoption of targeted ozone mitigation strategies under climate warming, particularly through varied regional strategies that consider existing anthropogenic emission levels and the prospective increase in biogenic volatile organic compounds. This identification of causal relationships in air pollution dynamics can support data-driven and accurate decision-making.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信