Sneha Samal , Jan Tomáštík , Lukáš Václavek , Mohit Chandra , Jaromír Kopeček , Ivo Stachiv , Petr Šittner
{"title":"Recovery of deformation surface of superelastic and shape memory NiTi alloy","authors":"Sneha Samal , Jan Tomáštík , Lukáš Václavek , Mohit Chandra , Jaromír Kopeček , Ivo Stachiv , Petr Šittner","doi":"10.1016/j.apsadv.2024.100684","DOIUrl":"10.1016/j.apsadv.2024.100684","url":null,"abstract":"<div><div>A series of indentation tests were carried out on superelastic (SE, Austenite) and shape memory alloy (SMA, Martensite) based NiTi alloys. Two types of indenters such as Berkovich and spherical indent radii of 5 and 10 µm were used in various indent loads on the surface of SE and SMA foils. Elastic and thermal surface recovery was estimated for the SE and SMA alloys at both indenters. SE sample shows the maximum recovery from deformation of 95 % at the load of 25–50 mN for the spherical indenter. However, SMA samples show a maximum recovery after heating on residual imprints of indent depth of 79 % at 250 mN load for spherical indenters. Elastic recovery in SE NiTi sample results from reverse phase transformation during unloading, however in SMA, this results from stress induced martensitic transformation. On thermal recovery SE shows recovery from shape memory region and martensite shows recovery from stress induced martensitic region. In multicycle tests, it was observed a first relative quick functional degradation of the material response, in terms of recovery capability, and a subsequent stabilization that typically occurs. Multicycle nanoindentation was performed for SE and SMA samples with a maximum load of 10 mN with a dwell time of 1s. SE shows elastic behaviour of the hysteresis curve that stabilizes after 10 cycles, however, SMA shows unrecovered strain with plasticity. On increment of the load up to 200 mN, the multicycle local indentation for SE represents the recovery of depth on each load, however overall, the unrecovered depth increases with load. However, in SMA, an increment of unrecovered depth was accumulated on each increased load.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100684"},"PeriodicalIF":7.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143183409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stanislav Haviar , Benedikt Prifling , Tomáš Kozák , Kalyani Shaji , Tereza Košutová , Šimon Kos , Volker Schmidt , Jiří Čapek
{"title":"Analysis and 3D modelling of percolated conductive networks in nanoparticle-based thin films","authors":"Stanislav Haviar , Benedikt Prifling , Tomáš Kozák , Kalyani Shaji , Tereza Košutová , Šimon Kos , Volker Schmidt , Jiří Čapek","doi":"10.1016/j.apsadv.2024.100689","DOIUrl":"10.1016/j.apsadv.2024.100689","url":null,"abstract":"<div><div>A methodology to model the percolated conductive network in nanoparticle-based thin films, synthesized by means of a magnetron-based gas aggregation source, was developed and validated. Two differently sized copper oxide nanoparticles were produced by varying the diameter of the exit orifice. Comprehensive characterization of these films was performed using scanning electron microscopy, transmission electron microscopy, small-angle X-ray scattering and X-ray diffraction to determine particle morphology, size distribution, porosity, vertical density profiles, and phase composition. Using the experimental data, virtual films were generated through a data-driven stochastic 3D microstructure model that is based on a sphere packing algorithm, where the particle size distribution, porosity and vertical density profile are taken into account. The generated 3D structures have been then refined to cover the effect of oxidation of as-deposited nanoparticles and non-zero roughness of real films. A computational model incorporating a simplified adsorption model was developed to simulate the effects of oxygen adsorption on the surface conductivity of the nanoparticles. Then, the electrical conductivity of the percolated networks in these virtual structures was computed using the finite element method for various partial oxygen pressures. Simulated resistivity values were compared with experimental measurements obtained from four-point probe resistivity measurements conducted under varying oxygen partial pressures at 150<!--> <!-->°C A discussion of the validity of the model and its ability to cover qualitatively and quantitatively the observed behaviour is included.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100689"},"PeriodicalIF":7.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143182009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanistic study of oxidative chemical vapor deposition of polypyrrole: Effects of the inert gas and deposition time","authors":"Fika Fauzi , Ranjita K. Bose","doi":"10.1016/j.apsadv.2024.100673","DOIUrl":"10.1016/j.apsadv.2024.100673","url":null,"abstract":"<div><div>Oxidative chemical vapor deposition (oCVD) is a method for synthesizing uniform and conformal thin films of conductive polymers without any solvents. The structure and properties of oCVD films can be tuned by controlling the process parameters such as the flow rates of the vapor-phase reactants, substrate temperatures, chamber pressure, inert gas flow rate, and deposition time. Although the first three parameters have been studied, the impact of the last two remains as yet unexplored. This study examines how the flow rate of nitrogen gas, an inert gas that assists the oxidant delivered into the reactor chamber, and the deposition time affect the structure and properties of oCVD film. Polypyrrole (PPy) was chosen in this study due to its versatility for many applications. The results showed that nitrogen gas primarily acts as an oxidant carrier gas, impacting the distribution of the oxidant adsorbed onto the substrates. This leads to varying structure and properties of the resultant PPy. Furthermore, nitrogen flow rate and deposition time affect the thickness and conductivity of PPy differently. Increasing nitrogen flow rate significantly improves the distribution of the oxidant, but it can also result in excessive polaronic defects. These defects can severely deteriorate the polymeric structure and reduce the conductivity. Meanwhile, extending the deposition time increases the film thickness linearly due to longer reaction time and initially enhances conductivity until it reaches a plateau. These insights can be beneficial not only for the oCVD method but also for other types of vapor-based polymerization techniques.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100673"},"PeriodicalIF":7.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143181997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Palladium nanoparticles immobilized on magnetic MCM-41 surface modified with aminomethylpyridine: As a recyclable palladium nanocatalyst for carbon-carbon cross-coupling reactions","authors":"Zeinab Shirvandi, Amin Rostami","doi":"10.1016/j.apsadv.2024.100688","DOIUrl":"10.1016/j.apsadv.2024.100688","url":null,"abstract":"<div><div>A new catalyst was synthesized by first immobilizing 2-amino-6-methylpyridine on a magnetic mesoporous surface (MMCM-41), followed by adding palladium nanoparticles on the modified surface. The synthesized catalyst was subjected to various characterization techniques, including Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), inductively coupled plasma optical emission spectroscopy (ICP-OES), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Characterization studies showed spherical nanoparticles in the synthesized nanocomposite (MMCM-41@APy-Pd). These particles exhibited a high BET surface area (127.62 m<sup>2</sup> g<sup>−1</sup>), an average pore size of 1.48 nm, and a significant pore volume (0.143 cm<sup>3</sup> g<sup>−1</sup>). These properties made MMCM-41@APy-Pd an effective magnetic nanocatalyst for Suzuki-Miyaura and Mizoroki-Heck coupling reactions. An extensive range of aryl halides, which have both electron-withdrawing and electron-donating groups, were investigated and showed high to satisfactory efficiency in the Suzuki and Heck cross-coupling reactions. The magnetic nanocatalyst demonstrated the ability to be employed for up to five consecutive applications with minimal decrease in its catalytic efficiency and could be effortlessly recovered from the reaction mixture.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100688"},"PeriodicalIF":7.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143182005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua W. Pinder , Jacob D. Crossman , Braxton Kulbacki , Matthijs A. van Spronsen , Jonas Baltrusaitis , Matthew R. Linford
{"title":"Introduction to the Special Issue: Modern Methods and Avoiding Errors in Surface Analysis","authors":"Joshua W. Pinder , Jacob D. Crossman , Braxton Kulbacki , Matthijs A. van Spronsen , Jonas Baltrusaitis , Matthew R. Linford","doi":"10.1016/j.apsadv.2024.100682","DOIUrl":"10.1016/j.apsadv.2024.100682","url":null,"abstract":"","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100682"},"PeriodicalIF":7.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143183410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akendra Singh Chabungbam , Dong-eun Kim , Yue Wang , Kyung-Mun Kang , Minjae Kim , Hyung-Ho Park
{"title":"Oxygen vacancy-controlled forming-free bipolar resistive switching in Er-doped ZnO memristor","authors":"Akendra Singh Chabungbam , Dong-eun Kim , Yue Wang , Kyung-Mun Kang , Minjae Kim , Hyung-Ho Park","doi":"10.1016/j.apsadv.2024.100675","DOIUrl":"10.1016/j.apsadv.2024.100675","url":null,"abstract":"<div><div>Zinc oxide (ZnO) is widely employed for multifunctional applications, including memristors, and has garnered substantial interest for its potential applications in next-generation integrated memory and neuromorphic computing. However, previous ZnO based memristor device studies have shown unsatisfactory performance, due to the large number of defects and low crystallinity in ZnO films deposited through several methods. This study proposes a method to modulate oxygen vacancies by doping, and subsequently confirms optimum defects at 0.14 at % Er doping. A highly crystalline Er doped ZnO (EZO) film was prepared using sputtering at room temperature for utilization as a resistive switching layer for a memristor device prepared on a transparent ITO substrate. The prepared memristor exhibited excellent forming-less uniform switching performance with endurance exceeding 10<sup>4</sup> cycles and stable retention for 10<sup>7</sup> s. Forming-free resistive switching in this device was driven by an interface type model to modulate oxygen vacancies. The remarkable EZO memristor switching characteristics suggests outstanding potential for next generation memory applications with remarkable stability, reproducibility, and reliability.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100675"},"PeriodicalIF":7.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143181998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hsin-Ying Lee , Mu-Ju Wu , Shao-Yu Chu , Ting-Chun Chang , Yi-Feng Tung , Tsung-Han Yeh , Ching-Ting Lee
{"title":"Highly sensitive NO2 gas sensors based on heterostructured p-rGO/n-Ga2O3 nanorods","authors":"Hsin-Ying Lee , Mu-Ju Wu , Shao-Yu Chu , Ting-Chun Chang , Yi-Feng Tung , Tsung-Han Yeh , Ching-Ting Lee","doi":"10.1016/j.apsadv.2024.100679","DOIUrl":"10.1016/j.apsadv.2024.100679","url":null,"abstract":"<div><div>In this study, using a sensing membrane composed of p-type reduced graphene oxide (rGO)-decorated hydrothermally synthesized n-type gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) nanorods, nitrogen dioxide (NO<sub>2</sub>) gas sensors were successfully fabricated. The characteristics of the rGO-decorated Ga<sub>2</sub>O<sub>3</sub> nanorods were analyzed by X-ray photoelectron spectroscopy (XPS). The experimental results indicated that the rGO decoration on the surface of the Ga<sub>2</sub>O<sub>3</sub> nanorods increased the amount of gas adsorption sites and oxygen vacancies, thereby enhancing electrical conductivity. Consequently, compared to NO<sub>2</sub> gas sensors utilizing only Ga<sub>2</sub>O<sub>3</sub> nanorods, the NO<sub>2</sub> gas sensors using rGO-decorated Ga<sub>2</sub>O<sub>3</sub> nanorod sensing membrane exhibited lower resistance, reduced activation energy, and higher response. Optimal response, reaching 51.14, was achieved by decorating with 15 mg of rGO. Additionally, the response and recovery times of the NO<sub>2</sub> gas sensors were shortened with an increase in the amount of rGO decoration on the Ga<sub>2</sub>O<sub>3</sub> nanorods. This improvement could be attributed to the trend of lower activation energy associated with an increased amount of rGO decoration. This study demonstrates the efficacy of rGO decoration in improving the performance of Ga<sub>2</sub>O<sub>3</sub> nanorod-based NO<sub>2</sub> gas sensors.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100679"},"PeriodicalIF":7.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143181999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. More-Chevalier , U.D. Wdowik , J. Martan , T. Baba , S. Cichoň , P. Levinský , D. Legut , E. de Prado , P. Hruška , J. Pokorný , J. Bulíř , C. Beltrami , T. Mori , M. Novotný , I. Gregora , L. Fekete , L. Volfová , J. Lančok
{"title":"Enhancing thermoelectric properties of ScN films through twin domains","authors":"J. More-Chevalier , U.D. Wdowik , J. Martan , T. Baba , S. Cichoň , P. Levinský , D. Legut , E. de Prado , P. Hruška , J. Pokorný , J. Bulíř , C. Beltrami , T. Mori , M. Novotný , I. Gregora , L. Fekete , L. Volfová , J. Lančok","doi":"10.1016/j.apsadv.2024.100674","DOIUrl":"10.1016/j.apsadv.2024.100674","url":null,"abstract":"<div><div>Tailoring thermoelectric properties of ScN-based materials is of vital importance for their application, particularly at high operating temperatures. Here, we report on the thermoelectric properties of the ScN layers deposited on MgO (001) substrates by the DC reactive magnetron sputtering. The microstructure of the produced thin films is examined by X-ray diffraction and atomic force microscopy, while their chemical composition and contamination by defects are determined by X-ray photoelectron spectroscopy. The effect of temperature on the phonon properties of ScN layers, having implications for their thermoelectric properties, is explored by Raman spectroscopy. The results of our experiments are confronted with those following from the first-principles studies. We find that the ScN/MgO(001) layers with twin-domain structure reveal enhanced thermoelectric properties at elevated temperature as compared to those measured for almost defect- and domain-free layers, namely, enlarged Seebeck coefficient by about 30% and over two and a half times increased figure of merit at 800 K. Therefore, structural twin domains in thin ScN film appear to be a simple and rather stable solution for the improvement of its thermoelectric properties at elevated temperatures.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100674"},"PeriodicalIF":7.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143182004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}