Atomic-scale insights into electronic structure of lattice-work structures on rutile TiO2(001) surface

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Eiichi Inami , Seiga Koga , Linfeng Hou , Fengxuan Li , Daiki Katsube , Masayuki Abe
{"title":"Atomic-scale insights into electronic structure of lattice-work structures on rutile TiO2(001) surface","authors":"Eiichi Inami ,&nbsp;Seiga Koga ,&nbsp;Linfeng Hou ,&nbsp;Fengxuan Li ,&nbsp;Daiki Katsube ,&nbsp;Masayuki Abe","doi":"10.1016/j.apsadv.2025.100777","DOIUrl":null,"url":null,"abstract":"<div><div>The lattice-work structure (LWS), a {114}-faceted surface reconstruction on rutile TiO₂(001), has been recognized for its potential in visible-light-driven photocatalysis. Although various spectroscopic techniques have provided insights into its electronic properties, their resolution was insufficient to directly correlate electronic states with the atomic structure, a key factor for understanding LWS-based photocatalysis. In this study, we investigated the atomic and electronic structures of LWS on rutile TiO₂(001) using ambient atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM), and ultrahigh-vacuum scanning tunneling microscopy (STM). AFM imaging revealed that annealing induces the formation of short, bright rows along the <span><math><mrow><mo>[</mo><mn>110</mn><mo>]</mo></mrow></math></span> and <span><math><mrow><mo>[</mo><mn>1</mn><mover><mrow><mn>1</mn></mrow><mo>‾</mo></mover><mn>0</mn><mo>]</mo></mrow></math></span> directions, which subsequently elongate and eventually cover the surface. Adjusting the annealing parameter thus allows us to control the LWS coverage. KPFM surface potential mapping indicated that these rows are negatively charged relative to the surrounding terraces, suggesting localized charge accumulation. Atomic-resolution STM and scanning tunneling spectroscopy confirmed a site-dependent electronic structure, with the atomic sub-row atop the LWS exhibiting a reduced band gap (∼1.75 eV) compared to that in valley parts of the LWS (&gt;3.0 eV). These findings directly linked the atomic structure of LWS to its local electronic states, clarifying the role of LWS in photocatalysis. Moreover, controlling LWS coverage via annealing enables tuning of the electronic states and local band gap variations, which can significantly influence photocatalytic performance under specific wavelengths of light.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"27 ","pages":"Article 100777"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The lattice-work structure (LWS), a {114}-faceted surface reconstruction on rutile TiO₂(001), has been recognized for its potential in visible-light-driven photocatalysis. Although various spectroscopic techniques have provided insights into its electronic properties, their resolution was insufficient to directly correlate electronic states with the atomic structure, a key factor for understanding LWS-based photocatalysis. In this study, we investigated the atomic and electronic structures of LWS on rutile TiO₂(001) using ambient atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM), and ultrahigh-vacuum scanning tunneling microscopy (STM). AFM imaging revealed that annealing induces the formation of short, bright rows along the [110] and [110] directions, which subsequently elongate and eventually cover the surface. Adjusting the annealing parameter thus allows us to control the LWS coverage. KPFM surface potential mapping indicated that these rows are negatively charged relative to the surrounding terraces, suggesting localized charge accumulation. Atomic-resolution STM and scanning tunneling spectroscopy confirmed a site-dependent electronic structure, with the atomic sub-row atop the LWS exhibiting a reduced band gap (∼1.75 eV) compared to that in valley parts of the LWS (>3.0 eV). These findings directly linked the atomic structure of LWS to its local electronic states, clarifying the role of LWS in photocatalysis. Moreover, controlling LWS coverage via annealing enables tuning of the electronic states and local band gap variations, which can significantly influence photocatalytic performance under specific wavelengths of light.
金红石型TiO2(001)表面晶格结构电子结构的原子尺度研究
晶格结构(LWS)是金红石tio2(001)上的{114}面结构,在可见光驱动的光催化中具有潜在的应用价值。尽管各种光谱技术已经提供了对其电子性质的见解,但它们的分辨率不足以直接将电子状态与原子结构联系起来,而原子结构是理解lws光催化的关键因素。本文采用环境原子力显微镜(AFM)、开尔文探针力显微镜(KPFM)和超高真空扫描隧道显微镜(STM)研究了金红石tio_2(001)上LWS的原子和电子结构。原子力显微镜成像显示,退火诱导沿[110]和[11 - 0]方向形成短而明亮的行,这些行随后延长并最终覆盖表面。通过调整退火参数,我们可以控制LWS的覆盖范围。KPFM表面电位图显示,这些排相对于周围的梯田带负电荷,表明局部电荷积累。原子分辨率STM和扫描隧道光谱证实了一种与位相关的电子结构,与LWS的山谷部分(>3.0 eV)相比,LWS顶部的原子子排显示出更小的带隙(~ 1.75 eV)。这些发现直接将LWS的原子结构与其局部电子态联系起来,阐明了LWS在光催化中的作用。此外,通过退火控制LWS覆盖范围可以调整电子状态和局部带隙变化,这可以显著影响特定波长下的光催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信