{"title":"Microstructural characterization and corrosion analysis of HA/TiO2 and HA/ZrO2 composite coating on Ti- alloy by laser cladding","authors":"Renu Kumari , Sumit Kumar , Alok Kumar Das , Ananad Mohan Murmu , Kumari Kanchan","doi":"10.1016/j.apsadv.2024.100655","DOIUrl":"10.1016/j.apsadv.2024.100655","url":null,"abstract":"<div><div>Titanium alloy implants release metallic ions into the bloodstream and high corrosion rate in physiological environment due to change in pH level. Here in, bio-ceramic HA coating and HA based binary composite coating (HA/TiO<sub>2</sub> and HA/ZrO<sub>2</sub>) have been developed on Ti-6Al-4 V alloy for improvement in corrosion resistance and reduction in the metal ion release. In this study, HA, HA/TiO<sub>2</sub>, and HA/ZrO<sub>2</sub> coating have been developed by using a 400 W, 1070 nm fiber laser cladding process. Microstructural characterization was performed using 3D-optical profilometer, FESEM, EDS, and XRD, while electrochemical properties were analyzed in simulated body fluid. The Ca/P ratio indicated HA decomposition into calcium phosphate during the laser process. Phase analysis identified α-Ti, Ca<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, TiO<sub>2</sub>, and CaTiO<sub>3</sub> in HA/TiO<sub>2</sub> cladding, and α-Ti, Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Ca<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, TiO<sub>2</sub>, CaTiO<sub>3</sub>, and CaZrO<sub>3</sub> in HA/ZrO<sub>2</sub> cladding. The analysis revealed that HA-based composite cladding produced a more corrosion resistant surface as compared to HA cladding and Ti-6Al-4 V alloy. However, HA/TiO<sub>2</sub> composite cladding significantly reduced corrosion current density, corrosion rate and increasing polarization resistance.</div><div>From the obtained results it is concluded that HA/ TiO<sub>2</sub> and HA/ ZrO<sub>2</sub> composite coating developed by laser cladding process, give cracks free structure and significantly decreased corrosion rate as compared to HA coating. This composite coating would be beneficial for improving orthopedic implant performance, and long-term durability.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"24 ","pages":"Article 100655"},"PeriodicalIF":7.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Sureshkumar , G. Navaneethakrishnan , S. Vidyasagar , R. Palanisamy , Subhashree Choudhury
{"title":"Performance analysis of turning operation parameters empirically on Delrin","authors":"B. Sureshkumar , G. Navaneethakrishnan , S. Vidyasagar , R. Palanisamy , Subhashree Choudhury","doi":"10.1016/j.apsadv.2024.100652","DOIUrl":"10.1016/j.apsadv.2024.100652","url":null,"abstract":"<div><div>Delrin is the best additional material for metals because of its inherent qualities, such as great wear resistance and tensile strength. The main aim of this work is to investigate how independent variables like feed rate, spindle speed, and depth of cut are significant for dependent variables such as surface roughness, temperature, stresses, and material removal rate on novel material Delrin. The independent variable ranges are selected based on tool and workpiece material combinations and machine tool specification as spindle speed 230 – 844 rpm, feed rate 0.5 – 1.5 mm/rev, and depth of cut 1 – 3 mm. Based on the L27 orthogonal array experimental plan 27 numbers of experiments are conducted by the design of experiment concepts. The theoretical investigation through response surface methodology is also conducted to establish how independent variables affected dependent variables when Delrin was being machined. The independent variable's significance is determined by the ANOVA table for all the considered responses. In addition to the considered flow of work, the experiential model is developed by the utilization of regression analysis. The developed models are confirmed by experimental data and the models have the best validation results with the experimental results.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"24 ","pages":"Article 100652"},"PeriodicalIF":7.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The essential synergy between experiments and theory in applied surface science","authors":"Alfredo Juan","doi":"10.1016/j.apsadv.2024.100651","DOIUrl":"10.1016/j.apsadv.2024.100651","url":null,"abstract":"","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"24 ","pages":"Article 100651"},"PeriodicalIF":7.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Garfias , María Sarret , Javier Sánchez , Irene G. Cano , Vicente Albaladejo-Fuentes , Teresa Andreu
{"title":"Manufacturing and properties characterization of Ti patterned coatings for water electrolyzers by CSAM","authors":"Andrea Garfias , María Sarret , Javier Sánchez , Irene G. Cano , Vicente Albaladejo-Fuentes , Teresa Andreu","doi":"10.1016/j.apsadv.2024.100649","DOIUrl":"10.1016/j.apsadv.2024.100649","url":null,"abstract":"<div><div>This work investigates the microstructure and manufacturing control of the masked Cold Spray Additive Manufacturing (CSAM) strategy for producing of new bipolar plates (BPPs) for Proton Exchange Membrane (PEM) electrolyzers, using low-cost, lightweight, and machinable materials. CSAM is a solid-state process capable of fabricating 3D patterned parts based on a bottom-up approach using masks with a desired pattern. This study focuses on the dimensional and microstructural characteristics of pin fins fabricated with spherical (Ti-S) and irregular (Ti-I) Ti powders using the masked CSAM technology. Additionally, the performance of both Ti parts for its application in PEM electrolyzers was evaluated in terms of corrosion resistance and interfacial contact resistance (ICR). The results demonstrated that the masked CSAM technology allowed precise control and customization of the dimensions of the 3D-printed pin fins, obtaining porosity values of 6 ± 1 % for Ti-S and 4 ± 1 % for Ti-I. The evaluation of the corrosion resistance of the CSAM Ti patterned parts showed that for both Ti-S and Ti-I powders a stable oxide film at the typical operation potential (1.8 V vs Ag/AgCl) of a PEM water electrolyzer was formed without signs of pitting corrosion. Finally, at a compaction pressure of 150 N/cm<sup>2</sup> ICR values of 42 ± 19, 40 ± 13, and 24 ± 7 mΩ·cm<sup>2</sup> were obtained for Ti-I, Ti-S, and standard Ti Bulk, respectively. The results suggest than the masked CSAM technology shows great potential for the fabrication of Ti BPPs.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"24 ","pages":"Article 100649"},"PeriodicalIF":7.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Divya Kumar, Marek Białoruski, Witold Piskorz, Andrzej Kotarba
{"title":"Exploring the role of edges in surface functionalization and stability of plasma-modified carbon materials: Experimental and DFT insights","authors":"Divya Kumar, Marek Białoruski, Witold Piskorz, Andrzej Kotarba","doi":"10.1016/j.apsadv.2024.100648","DOIUrl":"10.1016/j.apsadv.2024.100648","url":null,"abstract":"<div><div>Effective surface functionalization of carbon nanomaterials plays a crucial role in various applications. We investigated the impact of edges on surface functionalization and stability of oxygen-modified carbon materials using a combination of experimental techniques and Density Functional Theory (DFT) insights. Graphenic paper, highly oriented pyrolytic graphite (HOPG), and graphenic flakes were employed as model systems, with oxygen plasma treatment (generator power 100 W, oxygen pressure 0.2 mbar, exposure time 6 – 300 s) serving as the modification method. Surface morphology and chemical composition were characterized using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The results revealed the introduction of oxygen functional groups on the investigated carbon surfaces (up to 20 at % by XPS) whereas; the structural integrity of the materials remained intact upon plasma modification (SEM, Raman). Work function was used as a sensitive parameter for monitoring the surface changes (increase by ∼1.4 eV, 1.3 eV, and 1 eV for graphenic paper, HOPG, and graphenic flakes, respectively) while time-dependent measurements revealed distinct kinetic processes governing the decay of functionalization, highlighting the role of surface defects in post-plasma processes. DFT calculations provided molecular-level insights into the surface processes, elucidating the mechanisms underlying the diffusion of hydroxyls, their recombination, and water desorption. Since the calculated activation barrier for recombination on basal graphenic planes (∼1.0 eV) and edges (∼5.5 eV) are distinctly different, it can be thus concluded that the persistent functionalization is due to the surface edges. Our findings contribute to a deeper understanding of surface modification processes of carbon materials and offer rationales for the design of advanced functional nanomaterials with tailored surface properties.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"24 ","pages":"Article 100648"},"PeriodicalIF":7.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multidimensional woodchips-like Mn-metal-organic framework for asymmetric supercapacitor devices","authors":"Uma Shankar Veerasamy , Narayanamoorthi Eswaran , Konlayutt Punyawudho , Yuttana Mona , Nakorn Tippayawong , Pana Suttakul , Ramnarong Wanison","doi":"10.1016/j.apsadv.2024.100650","DOIUrl":"10.1016/j.apsadv.2024.100650","url":null,"abstract":"<div><div>Multidimensional manganese-metal organic frameworks (Mn-MOF) are synthesized using 1,2,4,5-Benzene tetracarboxylic acid (BTTC) at various temperatures (100–160 °C). The Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques successfully confirm the formation of Mn-MOF. Among the various temperatures, the Mn-MOF synthesized at 140 °C (Mn-MOF@BTTC-140) is remarkable because it has excellent crystallinity and a unique morphology, i.e., woodchips-like structure. The synthesized Mn-MOF@BTTC materials are used in supercapacitor applications. In comparison to all materials, Mn-MOF@BTTC-140 revealed the maximum specific capacitance (Cs) of 627 F g<sup>-1</sup> @ 1 A g<sup>-1</sup>, and it displayed 91 % capacitance retention even after the 6000 cycles at a current density of 10 A g<sup>-1</sup>. Furthermore, the supercapacitor device (SD) constructed using carbon nanofibers (CNF) as the negative electrode and Mn-MOF@BTTC-140 as the positive electrode delivered an energy density of 25 W h kg<sup>-1</sup> at a power density of 532 W kg<sup>-1</sup>. Ultimately, LED lighting demonstrates that our fabricated materials suit practical applications.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"24 ","pages":"Article 100650"},"PeriodicalIF":7.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subhasish Mishra , Lopamudra Acharya , S. Sharmila , Kali Sanjay , Rashmi Acharya
{"title":"Designing g-C3N4/NiFe2O4 S-scheme heterojunctions for efficient photocatalytic degradation of Rhodamine B and tetracycline hydrochloride","authors":"Subhasish Mishra , Lopamudra Acharya , S. Sharmila , Kali Sanjay , Rashmi Acharya","doi":"10.1016/j.apsadv.2024.100647","DOIUrl":"10.1016/j.apsadv.2024.100647","url":null,"abstract":"<div><div>Semiconductor based photocatalysis is considered as an effective and sustainable approach for the efficient treatment of effluents containing organic dyes and pharmaceuticals. Herein, visible light responsive g-C<sub>3</sub>N<sub>4</sub>/ NiFe<sub>2</sub>O<sub>4</sub> (CN/NF) composite photocatalysts were designed by sol-gel auto-combustion assisted calcination method using ethylene glycol (EG) as a chelating agent. Bidentate nature and lower molecular weight of EG favour slow hydrolysis of Ni<sup>2+</sup> and Fe<sup>3+</sup> ions followed by formation of homogenous gel phase which under auto-combustion produced NF precursors. Calcination of the mixture of dicyandiamide (DCDA) and predetermined amount of NF precursors at 550 °C for 4 h resulted in the formation of CN/NF nanocomposites in which NF nanoparticles are anchored on thick plates of porous CN. The construction of CN/NF S-scheme heterojunctions was established through XPS studies and scavenging tests. The 10CN/NF nanocomposite exhibited superior photocatalytic Rhodamine B (RhB) degradation efficiency (98.6 %) which is 2.7 and 3.1 folds superior than that of pure NF and CN respectively. Additionally, the photocatalytic performance of 10CN/NF for tetracycline hydrochloride (TCH) degradation was found to be 84.32 %. The degradation efficiency was around 1.75 and 2.6 times higher than that was observed for pristine NF and CN correspondingly. The current study will bring fresh insights into the synthesis of CN/NF heterojunctions with an S-scheme charge transfer channel for the efficient treatment of waste waters containing dyes and antibiotics.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"24 ","pages":"Article 100647"},"PeriodicalIF":7.5,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First-Principle Calculations of Interfacial Resistance between Nickel Silicide and Hyperdoped Silicon with N-Type Dopants Arsenic, Phosphorus, Antimony, Selenium and Tellurium","authors":"Changmin Lim , Shinyeong Park , Jiwon Chang","doi":"10.1016/j.apsadv.2024.100646","DOIUrl":"10.1016/j.apsadv.2024.100646","url":null,"abstract":"<div><div>The interfacial resistance between NiSi<sub>2</sub> and n-type doped Si was investigated using density functional theory calculations with hybrid functionals. We explored the resistance of Si at different doping concentrations by assigning an effective potential to each Si atom. Then, the valley filtering effect at the NiSi<sub>2</sub>/Si interface was estimated by comparing the transmission spectra of NiSi<sub>2</sub> and Si. We also examined the interfacial resistance between NiSi<sub>2</sub> and hyperdoped Si with substitutional n-type dopants, including pnictogen (P, As and Sb) and chalcogen (Se and Te) atoms. Two types of substitutional dopant structures (a single dopant and a dopant dimer) were considered. The formation and binding energies of a single P/Te and a P/Te dimer were investigated to understand the stability in Si. The resistances of Si with a single dopant and with a dopant dimer at high doping concentrations were calculated to show that the resistance as low as ∼ <span><math><mrow><mn>4</mn><mspace></mspace><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup><mspace></mspace><mstyle><mi>Ω</mi></mstyle><mo>·</mo><mi>c</mi><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span> can be achieved with a single dopant (P, As and Sb). However, at high doping concentration where a dopant dimer forms, a P dimer cannot effectively donate electrons, resulting in high resistance, while a Te dimer can still provide electrons, achieving a resistance of ∼ <span><math><mrow><mn>2</mn><mspace></mspace><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>10</mn></mrow></msup><mspace></mspace><mstyle><mi>Ω</mi></mstyle><mo>·</mo><mi>c</mi><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span>. Therefore, the chalcogen deep donor atoms (Se and Te) can be effective n-type donors and lower the silicide contact resistance at the interface where Si is extremely highly n-type doped.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"24 ","pages":"Article 100646"},"PeriodicalIF":7.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}